A solenoid that is 35 cm long and contains 450 circular coils 2.0 cm in diameter carries a 1.75-A current. (a) What is the magnetic field at the center of the solenoid, 1.0 cm from the coils? (b) Suppose we now' stretch out the coils to make a very long wire carrying the same current as before. What is the magnetic field 1.0 cm from the wire’s center? Is it the same as that in part (a)? Why or why not?
A solenoid that is 35 cm long and contains 450 circular coils 2.0 cm in diameter carries a 1.75-A current. (a) What is the magnetic field at the center of the solenoid, 1.0 cm from the coils? (b) Suppose we now' stretch out the coils to make a very long wire carrying the same current as before. What is the magnetic field 1.0 cm from the wire’s center? Is it the same as that in part (a)? Why or why not?
A solenoid that is 35 cm long and contains 450 circular coils 2.0 cm in diameter carries a 1.75-A current. (a) What is the magnetic field at the center of the solenoid, 1.0 cm from the coils? (b) Suppose we now' stretch out the coils to make a very long wire carrying the same current as before. What is the magnetic field 1.0 cm from the wire’s center? Is it the same as that in part (a)? Why or why not?
Which of the following best describes how to calculate the average acceleration of
any object?
Average acceleration is always halfway between the initial acceleration of an
object and its final acceleration.
Average acceleration is always equal to the change in velocity of an object
divided by the time interval.
Average acceleration is always equal to the displacement of an object divided by
the time interval.
Average acceleration is always equal to the change in speed of an object divided
by the time interval.
No chatgpt pls will upvote Already got wrong chatgpt answer
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Chapter 28 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.