Concept explainers
Test whether a graph is connected
Program Plan:
Exercise.java:
- Import the required packages.
- Create a class “Exercise”:
- Define the main method
- Prompt user to enter the link.
- Get the input
- The input is validated to read the number of vertices present in the graph.
- Display the count of the vertices.
- New array list gets defined.
- Loop that iterates to validate the input and remove the tokens.
- The graph values are validating by performing a depth first search.
- Condition to validate the vertices of the graph.
- Display the graph is connected or not connected.
- Define the main method
UnweightedGraph.java:
- Import the required packages.
- Create a class “UnweightedGraph”:
- New list for the vertices gets created.
- New list for the neighbor node gets created.
- Create an empty constructor.
- Method to create new graph gets created and adjacency list gets created.
- Method to create an adjacency list gets created.
- Method to return the size of the vertices.
- Method to return the index of the vertices gets defined.
- Method to gets the neighbor node gets defined.
- Method to return the degree of the vertices gets created.
- Method to print the Edges gets created.
- New to clear the graph gets created.
- Method to add vertex gets created.
- Method to add edge gets created.
- Method to perform the depth first search gets defined.
- Method to perform breadth first search gets defined.
- Search tree gets returned.
- Create a class “SearchTree”,
- Define the method to return the root.
- Method to return the parent of the vertices
- Method to return the search order gets defined.
- Method to return the number of vertices found gets defined.
- Method to get the path of the vertices gets defined.
- Loop to validate the path gets defined.
- Path gets returned.
- Method to print the path gets defined.
- Method to print the tree gets defined.
- Display the edge.
- Display the root.
- Condition to validate the parent node to display the vertices gets created.
Graph.java:
- A graph interface gets created.
- Method to return the size gets defined.
- Method to return the vertices gets defined.
- Method to return the index gets created.
- Method to get the neighbor node gets created.
- Method to get the degree gets created.
- Method to print the edges.
- Method to clear the node gets created.
- Method to add the edges, add vertex gets created.
- Method to remove the vertices gets defined.
- Method for the depth first search gets defined.
- Method for the breadth first search gets defined.
Edge.java
- Create a class “Edge”,
- Define and declare the required variables.
- Constructor gets defined.
- Method that defines Boolean objects gets defined.
- Return the value after validating the vertices.
The below program is used to test whether the graph given is connected or not
Explanation of Solution
Program:
Exercise.java:
//import the required headers
import java.util.*;
//define the class exercise
public class Exercise
{
//main method
public static void main(String[] args) throws Exception
{
//scanner input gets defined
java.util.Scanner input = new java.util.Scanner(System.in);
//prompt user to enter the link
System.out.print("Enter a URL: ");
//get the link
java.net.URL url = new java.net.URL(input.nextLine());
//method to open the url
java.util.Scanner inFile = new java.util.Scanner(url.openStream());
//number of vertices are read
String s = inFile.nextLine();
//get the number of vertices
int ver_num = Integer.parseInt(s);
//display the count of vertices
System.out.println("The number of vertices is "
+ ver_num);
//new array list gets defined
java.util.List<Edge> list = new java.util.ArrayList<>();
//loop that validate the file
while (inFile.hasNext())
{
//read the file
s = inFile.nextLine();
//key words are read
String[] tokens = s.split("[\\s+]");
//read the starting vertex
int startingVertex = Integer.parseInt(tokens[0].trim());
/*loop that iterates for the entire length of the file*/
for (int i = 1; i < tokens.length; i++)
{
//remove the tokens
int adjacentVertex = Integer.parseInt(tokens[i].trim());
//add integers to the list
list.add(new Edge(startingVertex, adjacentVertex));
}
}
//new graph gets defined
Graph<Integer> mygraph = new UnweightedGraph<>(list, ver_num);
//display the edges
mygraph.printEdges();
//perform depth first serach
UnweightedGraph<Integer>.SearchTree mytree = mygraph.dfs(0);
//condition to validate the vertices
if (mytree.getNumberOfVerticesFound() == ver_num)
//display the graph is connected
System.out.println("The graph is connected");
else
//display the graph is not connected
System.out.println("The graph is not connected");
}
}
UnweightedGraph.java: Refer Listing 28.4 in the textbook.
Graph.java: refer Listing 28.3 in the textbook.
Edge.java: refer Listing 28.1 in the textbook.
Enter a URL:
http://liveexample.pearsoncmg.com/test/GraphSample1.txt
The number of vertices is 6
0 (0): (0, 1) (0, 2)
1 (1): (1, 0) (1, 3)
2 (2): (2, 0) (2, 3) (2, 4)
3 (3): (3, 1) (3, 2) (3, 4) (3, 5)
4 (4): (4, 2) (4, 3) (4, 5)
5 (5): (5, 3) (5, 4)
The graph is connected
Want to see more full solutions like this?
Chapter 28 Solutions
Instructor Solutions Manual For Introduction To Java Programming And Data Structures, Comprehensive Version, 11th Edition
- 1. Complete the routing table for R2 as per the table shown below when implementing RIP routing Protocol? (14 marks) 195.2.4.0 130.10.0.0 195.2.4.1 m1 130.10.0.2 mo R2 R3 130.10.0.1 195.2.5.1 195.2.5.0 195.2.5.2 195.2.6.1 195.2.6.0 m2 130.11.0.0 130.11.0.2 205.5.5.0 205.5.5.1 R4 130.11.0.1 205.5.6.1 205.5.6.0arrow_forwardAnalyze the charts and introduce each charts by describing each. Identify the patterns in the given data. And determine how are the data points are related. Refer to the raw data (table):arrow_forward3A) Generate a hash table for the following values: 11, 9, 6, 28, 19, 46, 34, 14. Assume the table size is 9 and the primary hash function is h(k) = k % 9. i) Hash table using quadratic probing ii) Hash table with a secondary hash function of h2(k) = 7- (k%7) 3B) Demonstrate with a suitable example, any three possible ways to remove the keys and yet maintaining the properties of a B-Tree. 3C) Differentiate between Greedy and Dynamic Programming.arrow_forward
- What are the charts (with their title name) that could be use to illustrate the data? Please give picture examples.arrow_forwardA design for a synchronous divide-by-six Gray counter isrequired which meets the following specification.The system has 2 inputs, PAUSE and SKIP:• While PAUSE and SKIP are not asserted (logic 0), thecounter continually loops through the Gray coded binarysequence {0002, 0012, 0112, 0102, 1102, 1112}.• If PAUSE is asserted (logic 1) when the counter is onnumber 0102, it stays here until it becomes unasserted (atwhich point it continues counting as before).• While SKIP is asserted (logic 1), the counter misses outodd numbers, i.e. it loops through the sequence {0002,0112, 1102}.The system has 4 outputs, BIT3, BIT2, BIT1, and WAITING:• BIT3, BIT2, and BIT1 are unconditional outputsrepresenting the current number, where BIT3 is the mostsignificant-bit and BIT1 is the least-significant-bit.• An active-high conditional output WAITING should beasserted (logic 1) whenever the counter is paused at 0102.(a) Draw an ASM chart for a synchronous system to providethe functionality described above.(b)…arrow_forwardS A B D FL I C J E G H T K L Figure 1: Search tree 1. Uninformed search algorithms (6 points) Based on the search tree in Figure 1, provide the trace to find a path from the start node S to a goal node T for the following three uninformed search algorithms. When a node has multiple successors, use the left-to-right convention. a. Depth first search (2 points) b. Breadth first search (2 points) c. Iterative deepening search (2 points)arrow_forward
- We want to get an idea of how many tickets we have and what our issues are. Print the ticket ID number, ticket description, ticket priority, ticket status, and, if the information is available, employee first name assigned to it for our records. Include all tickets regardless of whether they have been assigned to an employee or not. Sort it alphabetically by ticket status, and then numerically by ticket ID, with the lower ticket IDs on top.arrow_forwardFigure 1 shows an ASM chart representing the operation of a controller. Stateassignments for each state are indicated in square brackets for [Q1, Q0].Using the ASM design technique:(a) Produce a State Transition Table from the ASM Chart in Figure 1.(b) Extract minimised Boolean expressions from your state transition tablefor Q1, Q0, DISPATCH and REJECT. Show all your working.(c) Implement your design using AND/OR/NOT logic gates and risingedgetriggered D-type Flip Flops. Your answer should include a circuitschematic.arrow_forwardA controller is required for a home security alarm, providing the followingfunctionality. The alarm does nothing while it is disarmed (‘switched off’). It canbe armed (‘switched on’) by entering a PIN on the keypad. Whenever thealarm is armed, it can be disarmed by entering the PIN on the keypad.If motion is detected while the alarm is armed, the siren should sound AND asingle SMS message sent to the police to notify them. Further motion shouldnot result in more messages being sent. If the siren is sounding, it can only bedisarmed by entering the PIN on the keypad. Once the alarm is disarmed, asingle SMS should be sent to the police to notify them.Two (active-high) input signals are provided to the controller:MOTION: Asserted while motion is detected inside the home.PIN: Asserted for a single clock cycle whenever the PIN has beencorrectly entered on the keypad.The controller must provide two (active-high) outputs:SIREN: The siren sounds while this output is asserted.POLICE: One SMS…arrow_forward
- 4G+ Vo) % 1.1. LTE1 : Q B NIS شوز طبي ۱:۱۷ کا A X حاز هذا على إعجاب Mohamed Bashar. MEDICAL SHOE شوز طبي ممول . اقوى عرض بالعراق بلاش سعر القطعة ١٥ الف سعر القطعتين ٢٥ الف سعر 3 قطع ٣٥ الف القياسات : 40-41-42-43-44- افحص وكدر ثم ادفع خدمة التوصيل 5 الف لكافة محافظات العراق ופרסם BNI SH ופרסם DON JU WORLD DON JU MORISO DON JU إرسال رسالة III Messenger التواصل مع شوز طبي تعليق باسم اواب حمیدarrow_forwardA manipulator is identified by the following table of parameters and variables:a. Obtain the transformation matrices between adjacent coordinate frames and calculate the global transformation matrix.arrow_forwardWhich tool takes the 2 provided input datasets and produces the following output dataset? Input 1: Record First Last Output: 1 Enzo Cordova Record 2 Maggie Freelund Input 2: Record Frist Last MI ? First 1 Enzo Last MI Cordova [Null] 2 Maggie Freelund [Null] 3 Jason Wayans T. 4 Ruby Landry [Null] 1 Jason Wayans T. 5 Devonn Unger [Null] 2 Ruby Landry [Null] 6 Bradley Freelund [Null] 3 Devonn Unger [Null] 4 Bradley Freelund [Null] OA. Append Fields O B. Union OC. Join OD. Find Replace Clear selectionarrow_forward
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT