PHYSICS 1250 PACKAGE >CI<
9th Edition
ISBN: 9781305000988
Author: SERWAY
Publisher: CENGAGE LEARNING (CUSTOM)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 28.14OQ
A circuit consists of three identical lamps connected to a battery as in Figure OQ28.14. The battery has some internal resistance. The switch S, originally open, is closed. (i) What then happens to the brightness of lamp B? (a) It increases. (b) It decreases somewhat. (c) It does not change. (d) It drops to zero. For parts (ii) to (vi), choose from the same possibilities (a) through (d). (ii) What happens to the brightness of lamp C? (iii) What happens to the current in the battery? (iv) What happens to the potential difference across lamp A? (v) What happens to the potential difference across lamp C? (vi) What happens to the total power delivered to the lamps by the battery?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
25.54. In the circuit shown in
Fig. P25.54, R is a variable resistor whose
value ranges from 0 to co, and a and b are
the terminals of a battery that has an emf
E = 15.0V and an internal resistance of
4.00 2. The ammeter and voltmeter are
idealized meters. As R varies over its full
range of values, what will be the largest
and smallest readings of (a) the voltmeter
and (b) the ammeter? (c) Sketch qualita-
tive graphs of the readings of both meters
as functions of R.
Figure P25.54
R
25.33
The circuit shown Figure E25.33
in Fig. E25.33 contains two
batteries, each with an emf and
an internal resistance, and two
resistors. Find (a) the current in 5.0 N
the circuit (magnitude and di-
rection) and (b) theterminal volt-
1.6 Ω 16.0V
ww
b.
a
90 Ω
1.4 N 8.0V
ww
age Vab of the 16.0-V battery.
E2
R1
R2
2. Find the charge on the capacitor after the switch has been left open for some
time, then closed for some period of time. We can assume that C = 2 µF, with
batteries of values E1 = 2V and E2 = 1 V, and resistor values R1
R2 = 0.25 2.
0.52 and
Chapter 28 Solutions
PHYSICS 1250 PACKAGE >CI<
Ch. 28 - To maximize the percentage of the power from the...Ch. 28 - With the switch in the circuit of Figure 27.4a...Ch. 28 - With the switch in the circuit of Figure 27.6a...Ch. 28 - Prob. 28.4QQCh. 28 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Is a circuit breaker wired (a) in series with the...Ch. 28 - A battery has some internal resistance. (i) Clan...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - When operating on a 120-V circuit, an electric...Ch. 28 - If the terminals of a battery with zero internal...
Ch. 28 - Prob. 28.6OQCh. 28 - What is the time constant of the circuit shown in...Ch. 28 - When resistors with different resistances are...Ch. 28 - When resistors with different resistances are...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - Are the two headlights of a car wired (a) in...Ch. 28 - In the circuit shown in Figure OQ28.12, each...Ch. 28 - Prob. 28.13OQCh. 28 - A circuit consists of three identical lamps...Ch. 28 - A series circuit consists of three identical lamps...Ch. 28 - Suppose a parachutist lands on a high-voltage wire...Ch. 28 - A student claims that the second of two lightbulbs...Ch. 28 - Why is ii possible for a bird to sit on a...Ch. 28 - Given three lightbulbs and a battery, sketch as...Ch. 28 - Prob. 28.5CQCh. 28 - Referring to Figure CQ28.6, describe what happens...Ch. 28 - Prob. 28.7CQCh. 28 - (a) What advantage does 120-V operation offer over...Ch. 28 - Prob. 28.9CQCh. 28 - Prob. 28.10CQCh. 28 - A battery has an emf of 15.0 V. The terminal...Ch. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and 171...Ch. 28 - As in Example 27.2, consider a power supply with...Ch. 28 - Three 100- resistors are connected as shown in...Ch. 28 - Prob. 28.6PCh. 28 - What is the equivalent resistance of the...Ch. 28 - Consider the two circuits shown in Figure P27.5 in...Ch. 28 - Consider the circuit shown in Figure P28.9. Find...Ch. 28 - (a) You need a 45- resistor, but the stockroom has...Ch. 28 - A battery with = 6.00 V and no internal...Ch. 28 - A battery with emf and no internal resistance...Ch. 28 - (a) Kind the equivalent resistance between points...Ch. 28 - (a) When the switch S in the circuit of Figure...Ch. 28 - Prob. 28.15PCh. 28 - Four resistors are connected to a battery as shown...Ch. 28 - Consider die combination of resistors shown in...Ch. 28 - For the purpose of measuring the electric...Ch. 28 - Calculate the power delivered to each resistor in...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - Consider the circuit shown in Figure P28.21 on...Ch. 28 - In Figure P28.22, show how to add just enough...Ch. 28 - The circuit shown in Figure P27.17 is connected...Ch. 28 - For the circuit shown in Figure P28.24, calculate...Ch. 28 - What are the expected readings of (a) the ideal...Ch. 28 - The following equations describe an electric...Ch. 28 - Taking R = 1.00 k and = 250 V in Figure P27.19,...Ch. 28 - You have a faculty position at a community college...Ch. 28 - The ammeter shown in Figure P28.29 reads 2.00 A....Ch. 28 - In the circuit of Figure P28.30, determine (a) the...Ch. 28 - Using Kirchhoffs rules, (a) find (he current in...Ch. 28 - In the circuit of Figure P27.20, the current I1 =...Ch. 28 - In Figure P28.33, find (a) the current in each...Ch. 28 - For the circuit shown in Figure P27.22, we wish to...Ch. 28 - Find the potential difference across each resistor...Ch. 28 - (a) Can the circuit shown in Figure P27.21 be...Ch. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Consider a series RC circuit as in Figure P28.38...Ch. 28 - A 2.00-nF capacitor with an initial charge of 5.10...Ch. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - The circuit in Figure P28.43 has been connected...Ch. 28 - Show that the integral 0e2t/RCdtin Example 27.11...Ch. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 28.46PCh. 28 - Prob. 28.47PCh. 28 - Turn on your desk lamp. Pick up the cord, with...Ch. 28 - Assume you have a battery of emf and three...Ch. 28 - Find the equivalent resistance between points a...Ch. 28 - Four 1.50-V AA batteries in series are used to...Ch. 28 - Four resistors are connected in parallel across a...Ch. 28 - The circuit in Figure P27.35 has been connected...Ch. 28 - The circuit in Figure P27.34a consists of three...Ch. 28 - For the circuit shown in Figure P28.55. the ideal...Ch. 28 - The resistance between terminals a and b in Figure...Ch. 28 - (a) Calculate the potential difference between...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - A rechargeable battery has an emf of 13.2 V and an...Ch. 28 - Find (a) the equivalent resistance of the circuit...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - The- pair of capacitors in Figure P28.63 are fully...Ch. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - The circuit in Figure P27.41 contains two...Ch. 28 - Two resistors R1 and R2 are in parallel with each...Ch. 28 - Prob. 28.67APCh. 28 - A battery is used to charge a capacitor through a...Ch. 28 - A young man owns a canister vacuum cleaner marked...Ch. 28 - (a) Determine the equilibrium charge on the...Ch. 28 - Switch S shown in Figure P28.71 has been closed...Ch. 28 - Three identical 60.0-W, 120-V lightbulbs are...Ch. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - In Figure P27.47, suppose the switch has been...Ch. 28 - Figure P27.48 shows a circuit model for the...Ch. 28 - The student engineer of a campus radio station...Ch. 28 - The circuit shown in Figure P28.78 is set up in...Ch. 28 - An electric teakettle has a multiposition switch...Ch. 28 - A voltage V is applied to a series configuration...Ch. 28 - In places such as hospital operating rooms or...Ch. 28 - The switch in Figure P27.51a closes when Vc23Vand...Ch. 28 - The resistor R in Figure P28.83 receives 20.0 W of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The- pair of capacitors in Figure P28.63 are fully charged by a 12.0-V battery. The battery is disconnected, and the switch is then closed. Alter 1.00 ms has elapsed, (a) how much charge remains 011 the 3.00-F capacitor? (b) How much charge remains on the 2.00-F capacitor? (c) What is the current in the resistor at this time?arrow_forwardConsider a series RC circuit as in Figure P28.38 for which R = 1.00 M, C = 5.00 F, and = 30.0 V. Find (a) the time constant of the circuit and (b) the maximum charge on the capacitor after the switch is thrown closed. (c) Find the current in the resistor 10.0 s after the switch is closed.arrow_forwardA 2 µF capacitor is connected to two resistors and a 10 V battery, as shown. Both switches A and B are open initially, and the capacitor is uncharged. Switch A is now closed. After a few seconds A is opened and after that B is closed. Just after B is closed what is the current through the 10 ohm resistor? A B 10 2 10 V 2 µF WW zero O 1.0 A O 2.0 A O 0.63 A O 0.37 Aarrow_forward
- A 10 MΩ resistor is connected in series with a 1.0 μF capacitor and a battery with emf 12.0 V. Before the switch is closed at time t=0,the capacitor is uncharged. What fraction of the final charge Qf is on the capacitor at t=10s?arrow_forwardIn Figure P28.67, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. (E = 8.50 V, r1 = 10 kN, and r2 = 16 kN.) 10.0 µF 3.00 k2 Figure P28.67 (a) Find the steady-state current in each resistor. I = 327 HA I2 = 327 HA 13-kn = 0 HA (b) Find the charge Q on the capacitor. 52 (c) The switch is opened at t = 0. Write an equation for the current IR, in R2 as a function of time. O (327 HA)e-t/(0.190 s) O (275 µA)et/(0.190 s) O (275 µA)e-t/(0.190 s) O (327 µA)et/(0.190 s) (d) Find the time that it takes for the charge on the capacitor to fall to one-fifth its initial value. msarrow_forwardIn Figure P28.67, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. (E = 8.50 V, r1 = 10 kN, and r2 = 16 kN.) 10.0 µF 3.00 k2 Figure P28.67 (a) Find the steady-state current in each resistor. I1 = 1.32 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. µA I2 = 4.32 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. µA I3-ko = 0 HA (b) Find the charge Q on the capacitor. 8.83 Your response differs from the correct answer by more than 10%. Double check your calculations. µC (c) The switch is opened at t = 0. Write an equation for the current IR, in R, as a function of time. O (327 µA)e-t/(0.190 s) O (275 µA)et/(0.190 s) O (275 µA)e-t/(0.190 s) O (327 µA)et/(0.190 s) (d) Find the time that it takes for the charge on the capacitor to fall to one-fifth its initial…arrow_forward
- What is the time constant of the circuit shown in Figure OQ28.7? Each of the five resistors has resistance R. and each of the five capacitors has capacitance C. The internal resistance of the battery is negligible. (a) RC. (b) 5RC. (c) 10RC (d) 25RC (e) none of those answersarrow_forwardIn the circuit shown both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time? 15.0 20.0 50.0 N µF µF 30.0 Narrow_forwardIn the circuit shown in Figure OQ28.12, each battery is delivering energy to the circuit by electrical transmission. All the resistors have equal resistance. (i) Rank the electric potentials at points a, b. c, d, and e from highest to lowest, noting any cases of equality in the ranking. (ii) Rank the magnitudes of the currents at the same points from greatest to least, noting any cases of equality.arrow_forward
- p7arrow_forwardp7arrow_forwardSwitch S in in the figure is closed at time t = 0, to begin charging an initially uncharged capacitor of capacitance C = 17.9 µF through a resistor of resistance R = 22.8 2. At what time is the potential across the capacitor equal to that across the resistor? Number i 0 Units H S W m R ◄► сarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY