Concept explainers
Predict/Calculate The interference pattern shown in Figure 28-45 (a) is produced by green light with a wavelength of λ = 505 nm passing through two slits with a separation of 127μm. After passing through the slits, the light forms a pattern of bright and dark spots on a screen located 1.25 m from the slits (a) What is the distance between the two vertical, dashed lines in Figure 28-45 (a)? (b) if it is desired to produce a more tightly packed interference pattern, like the one shown in Figura 28-45 (b), should the
Want to see the full answer?
Check out a sample textbook solutionChapter 28 Solutions
Physics (5th Edition)
Additional Science Textbook Solutions
Genetic Analysis: An Integrated Approach (3rd Edition)
Anatomy & Physiology (6th Edition)
Concepts of Genetics (12th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Cosmic Perspective Fundamentals
- (a) What is the distance between the slits of a diffraction grating that produces a first-order maximum for the first Balmer line at an angle of 20.0°? (b) At what angle will the fourth line of the Balmer series appear in first order? (c) At what angle will the second-order maximum be for the first line?arrow_forwardShow that the distribution of intensity in a double-slit pattern is given by Equation 36.9. Begin by assuming that the total magnitude of the electric field at point P on the screen in Figure 36.4 is the superposition of two waves, with electric field magnitudes E1=E0sintE2=E0sin(t+) The phase angle in in E2 is due to the extra path length traveled by the lower beam in Figure 36.4. Recall from Equation 33.27 that the intensity of light is proportional to the square of the amplitude of the electric field. In addition, the apparent intensity of the pattern is the time-averaged intensity of the electromagnetic wave. You will need to evaluate the integral of the square of the sine function over one period. Refer to Figure 32.5 for an easy way to perform this evaluation. You will also need the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)arrow_forwardThe intensity on the screen at a certain point in a double- slit interference pattern is 64.0% of the maximum value. (a) What minimum phase difference (in radians) between sources produces this result? (b) Express this phase difference as a path difference for 486.1-nm light.arrow_forward
- When we studied Youngs double-slit experiment, we mostly ignored the dark fringe pattern produced by diffraction. Use Figure 35.21 to describe situations in which that omission makes sense. Think especially about the single slit used in front of the double slit in Youngs experiment (Fig. 35.9).arrow_forwardWhat is the distance between lines on a diffraction grating that produces a second-order maximum for 760-nm red light at an angle of 60.0°?arrow_forwardLight of wavelength 587.5 nm illuminates a slit of width 0.75 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.85 mm from the central maximum? (b) Calculate the width of the central maximum.arrow_forward
- A hydrogen gas discharge lamp emits visible light at four wavelengths, =410 , 434, 486, and 656 nm. (a) If light from this lamp falls on a N slits separated by 0.025 mm, how far from the central maximum are the third maxima when viewed on a screen 2.0 m from the slits? (b) By what distance are the second and third maxima separated for l=486 nm?arrow_forwardHow narrow is a slit that produces a diffraction pattern on a screen 1.8 m away whose central peak is 1.0 m wide? Assume =589 nm.arrow_forwardMonochromatic light is incident on a pair of slits that are separated by 0.200 mm. The screen is 2.50 m away from the slits. a. If the distance between the central bright fringe and either of the adjacent bright fringes is 1.67 cm, find the wavelength of the incident light. b. At what angle does the next set of bright fringes appear?arrow_forward
- Assume Figure 38.1 was photographed with red light of a single wavelength 0. The light passed through a single slit of width a and traveled distance L to the screen where the photograph was made. Consider the width of the central bright fringe, measured between the centers of the dark fringes on both sides of it. Rank from largest to smallest the widths of the central fringe in the following situations and note any cases of equality. (a) The experiment is performed as photographed. (b) The experiment is performed with light whose frequency is increased by 50%. (c) The experiment is performed with light whose wavelength is increased by 50%. (d) The experiment is performed with the original light and with a slit of width 2a. (e) The experiment is performed with the original light and slit and with distance 2L to the screen.arrow_forwardCalculate the angle for the third-order maximum of 580-nm wavelength yellow light falling on double slits separated by 0.100 mm.arrow_forwardEight slits equally separated by 0.149 mm is uniformly illuminated by a monochromatic light at =523 nm. What is the width of the central principal maximum on a screen 2.35 m away?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax