Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 28.3, Problem 3EYU
For each of the cases shown in Figure 28-22, state whether the phase change for reflection 1 is greater than, less than, or equal to the phase change for reflection 2. (a) n1 = 1.2, n2 = 1 4; (b) n1 = 1.4, n2 = 12; (c) n1 = 1.2, n2 = 1.1; (d) n1 = 1.5, n2 = 16.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A light ray is incident onto the interface between air (n, = 1) and glass (n2 = v3) at 45° with
respect to the normal, as shown in the figure below. At which interface, the light will undergo total
internal reflection?
= lu
= v3
= v2
n2 =
n3 = 2
N4 = 1.6
The ray will not undergo total internal
reflection at any interface
n_3-n_4
O n_1-n_2
O n_2-n_3
White light strikes the left face of a 30°-60°-90° glass prism along a normal to the surface (so there is no refraction there).
The light moves horizontally through the prism and strikes the right face at an angle of 30.00° to the normal. As the light
leaves the prism it is refracted at the right face. DO ALL CALCULATIONS TO 4 SIGNIFICANT FIGURES!
30
A
30.0⁰
30.0°
90°
60°
What is the DIFFERENCE in the refracted angles for red light (nred = 1.547) and violet (nviolet = 1.588)? Find (0₁-0₁),
where 0 and 0, are the angles of refraction for violet and red light.
degrees
Part (b) Numerically, what is the angle in degrees?
θ2=
Part (c) Write an expression for the reflection angle ψ, with respect to the surface.
ψ =
Part (d) Numerically, what is this angle in degrees?
ψ =
Chapter 28 Solutions
Physics (5th Edition)
Ch. 28.1 - Two beams of light that have the same phase are...Ch. 28.2 - If the wavelength in a two-slit experiment is...Ch. 28.3 - For each of the cases shown in Figure 28-22, state...Ch. 28.4 - If the wavelength of light passing through a...Ch. 28.5 - If you view the world with blue light, is your...Ch. 28.6 - Suppose a diffraction grating has slits separated...Ch. 28 - Prob. 1CQCh. 28 - What happens to the two-slit interference pattern...Ch. 28 - If a radio station broadcasts its signal through...Ch. 28 - How would you expect the interference pattern of a...
Ch. 28 - Describe the changes that would be observed in the...Ch. 28 - Two identical sheets of glass are coated with...Ch. 28 - A cats eye has a pupil that is elongated in the...Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Two sources emit waves that are coherent, in...Ch. 28 - In an experiment to demonstrate interference, you...Ch. 28 - A theme park creates a new kind of water wave pool...Ch. 28 - Two sources emit waves that are in phase with each...Ch. 28 - A person driving at 17 m/s crosses the line...Ch. 28 - Two students in a dorm room listen to a pure tone...Ch. 28 - If the loudspeakers in Problem 6 are 180 out of...Ch. 28 - A microphone is located on the line connecting two...Ch. 28 - A microphone is located on the line connecting two...Ch. 28 - Predict/Calculate Radio waves of frequency 1.427...Ch. 28 - Moe, Larry, and Curly stand in a line with a...Ch. 28 - Predict/Calculate In Figure 28-43 the two speakers...Ch. 28 - Consider a two-slit interference pattern, with...Ch. 28 - (a) Does the path-length difference l increase or...Ch. 28 - Predict/Explain A two-slit experiment with red...Ch. 28 - Laser light with a wavelength = 690 nm...Ch. 28 - Monochromatic light passes through two slits...Ch. 28 - In Youngs two-slit experiment, the first dark...Ch. 28 - Predic/Calculate A two-slit experiment with slits...Ch. 28 - A two-slit pattern is viewed on a screen 1.00 m...Ch. 28 - Light from a He-Ne laser ( = 632.8 nm) strikes a...Ch. 28 - For a science fair demonstration you would like to...Ch. 28 - Light with a wavelength of 576 nm passes through...Ch. 28 - Predict/Calculate Suppose the inference pattern...Ch. 28 - A physics instructor wants to produce a...Ch. 28 - Predict/Calculate When green light ( = 505 nm)...Ch. 28 - Predict/Calculate The interference pattern shown...Ch. 28 - Figure 28-46 shows four different cases where...Ch. 28 - The oil film floating on water in the accompanying...Ch. 28 - A soap bubble with walls 418 nm thick floats in...Ch. 28 - A soap film (n = 1.33) is 825 nm thick. White...Ch. 28 - White light is incident on a soap film (n = 1.30)...Ch. 28 - A 742-nm-thick soap film (nfilm = 1.33) rests on a...Ch. 28 - An oil film (n = 1.46) floats on a water puddle....Ch. 28 - A radio broadcast antenna is 36.00 km from your...Ch. 28 - Predict/Calculate Newton s Rings Monochromatic...Ch. 28 - Light is incident from above on two plates of...Ch. 28 - Submarine Saver A naval engineer is testing an...Ch. 28 - Predict/Calculate A thin layer of magnesium...Ch. 28 - A single-slit diffraction pattern is formed on a...Ch. 28 - White light is incident normally on a thin soap...Ch. 28 - Two glass plates are separated by fine wires with...Ch. 28 - A single-slit diffraction pattern is formed on a...Ch. 28 - What width single slit will produce first-order...Ch. 28 - Diffraction also occurs with sound waves Consider...Ch. 28 - Green light ( = 546 nm) strikes a single slit at...Ch. 28 - Light with a wavelength of 696 nm passes through a...Ch. 28 - Predict/Calculate A single slit is illuminated...Ch. 28 - How many dark fringes will be produced on either...Ch. 28 - Predict/Calculate The diffraction pattern shown in...Ch. 28 - A screen is placed 1.50 m behind a single slit....Ch. 28 - Predict/Explain (a) In principle, do your eyes...Ch. 28 - Two point sources of light are separated by 5.5...Ch. 28 - A spy camera is said to be able to read the...Ch. 28 - Splitting Binary Stars As seen from Earth, the red...Ch. 28 - Very Large Telescope Interferometer A series of...Ch. 28 - Find the minimum aperture diameter of a camera...Ch. 28 - The Resolution of Hubble The Hubble Space...Ch. 28 - A lens that is optically perfect is still limited...Ch. 28 - Early cameras were little more than a box with a...Ch. 28 - A grating has 797 lines per centimeter Find the...Ch. 28 - Prob. 62PCECh. 28 - A diffraction groting has 2500 lines/cm What is...Ch. 28 - The yellow light from a helium discharge tube has...Ch. 28 - A diffraction grating with 365 lines/mm is 1 25 m...Ch. 28 - Protein Structure X-rays with a wavelenglh of 0...Ch. 28 - White light strikes a grating with 7600...Ch. 28 - White light strikes a diffraction grating...Ch. 28 - CD Reflection The rows of bumps on a CD form lines...Ch. 28 - A light source emits two district wavelengths [1 =...Ch. 28 - A laser emits two wavelengths ( = 420 nm; 2 = 630...Ch. 28 - Predict/Calculate When blue light with a...Ch. 28 - Monochromatic light strikes a diffracton grating...Ch. 28 - A diffraction grating with a slit separation d is...Ch. 28 - CE Predict/Explain (a) If a thin liquid film...Ch. 28 - CE If the index of refraction of an eye could be...Ch. 28 - When reading the printout from a laser printer,...Ch. 28 - The headlights of a pickup truck are 1 36 m apart...Ch. 28 - Antireflection Coating A glass lens (nglass = 1...Ch. 28 - A thin film of oil (n = 1.30) floats on water (n =...Ch. 28 - The yellow light of sodium, with wavelengths of...Ch. 28 - Predict/Calculate A thin soap film (n = 1.33)...Ch. 28 - Predict/Calculate A thin film of oil (n = 1.40)...Ch. 28 - PredictfCalculate Sodium light, with a wavelength...Ch. 28 - BIO The Largest Eye The colossal squid...Ch. 28 - Product/Calculate Figure 28-49 shows a single-slit...Ch. 28 - BIO Entoptic Halos Images produced by structures...Ch. 28 - White light is incident on a soap film (n = 1.33,...Ch. 28 - Predict/Calculate A system like that shown in...Ch. 28 - A curved piece of glass with a radius of curvature...Ch. 28 - BIO The Resolution of the Eye The resolution of...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Predict/Calculate Referring to Example 28-3...Ch. 28 - Predict/Calculate Referring to Example 28-3 The...Ch. 28 - Predict/Calculate Referring to Example 28-11 The...Ch. 28 - Predictf/Calculate Referring to Example 28-11 The...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1.14 Classify each of the following as a pure substance or a mixture. If a mixture, indicate whether it is homo...
Chemistry: The Central Science (14th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
61. Josh starts his sled at the top of a 3.0-m-high hill that has a constant slope of 25°. After reaching the b...
College Physics: A Strategic Approach (3rd Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- P-2 Please solve this problem very clearly and briefly with step by step explanation. NOTE: but take the index of refraction n = 1.50.arrow_forwardChapter 34, Problem 003 In the figure, an isotropic point source of light S is positioned at distance d from a viewing screen A and the light intensity Ip at point P (level with S) is measured. Then a plane mirror M is placed behind S at distance 1.3d. By how much is Ip multiplied by the presence of the mirror? M - 1.3d --d- Number Units Use correct number of significant digits; the tolerance is +/-2%arrow_forwardFor problem 61 calculate the angle theta in degrees if the index of refraction of medium 1 is 1.77 (5 sig figs)arrow_forward
- Fasyarrow_forwardA light wave moves between medium 1 and medium 2. Which of the following are correct statements relating its speed, frequency, and wavelength in the two media, the indices of refraction of the media, and the angles of incidence and refraction? More than one statement may be correct, (a) 1/sin 1 = 2/sin 2 (b) csc 1/n1 = csc 2/n2 (c) 1/sin 1, = 2/sin 2 (d)1/sin 1, = 2s/sin 2 (e) n1/cos 1 = n2/cos 2arrow_forwardHow can you use total internal reflection to estimate the index of refraction of a medium?arrow_forward
- The index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardLight traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardLight is an incident on a vertical interface between two mediums as shown in the picture. The medium on the left has an index of refraction n(left) & the medium on the right has an index of refraction n(right). The light comes from the bottom left. If n(left)=1.3, n(right)=2.3, & angle of incidence = 41degrees. What is the angle of refraction? -68.2 -49.0 -0 -41.0 -21.8 If n(left)=1.3, n(right)=2.3, & angle of incidence= 41degrees, what is the angle of reflection? *same choices as first question*arrow_forward
- A costume jewelry pendant made of cubic zirconia is submerged in oil. A light ray strikes one face of the zirconia crystal at an angle of incidence of 37°. Once inside, what is the ray's angle with respect to the face of the crystal? Express your answer in degrees to two significant figures. ► View Available Hint(s) 0 = ΠΑΠΙ ΑΣΦarrow_forwardProblem 6: The figure shows the path of a beam of light through several layers of different indices of refraction. a) If 0₁ = 30°, what is the angle 02 of the emerging beam? b) What is the minimum incident angle 0₁ in order to have total internal reflection at the surface between the n = 1.2 medium and the n = 1 medium (air)? 18=1.20 n=1.00 b₂ n=1.60 n=1.40arrow_forwardThe prism shown in the figure (Figure 1)has a refractive index of 1.57, and the angles A are 25.5 °. Two light rays m and n are parallel as they enter the prism. Figure m n A 1 of 1 Part A What is the angle between them after they emerge? 0 = Submit 17 ΑΣΦ Provide Feedback Request Answer ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY