College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 28, Problem 24PE
If a galaxy moving away from the Earth has a speed of 1000 km/s and emits 656 nm light characteristic of hydrogen (the most common element in the universe). (a) What wavelength would we observe on the Earth? (b) What type of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) The distance to a star is approximately 5.50 × 10¹8 m. If this star were to burn out today, in how many years would we see it disappear?
581.35
years
(b) How long does it take sunlight to reach Earth?
8.33
minutes
(c) How long does it take for a microwave radar signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 x 105 km.)
X
1.28
Your response differs from the correct answer by more than 10%. Double check your calculations. S
(a) The distance to a star is approximately 4.97 × 10¹8 m. If this star were to burn out today, in how many years would we see it disappear?
years
(b) How long does it take sunlight to reach Earth?
minutes
(c) How long does it take for a microwave radar signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 x 105 km.)
S
A star’s spectrum emits more radiation with a wavelength of 690.0 nm than with any other wavelength.
If the star is 9.78 ly from Earth and its radius is 7.20 × 108 m, what will an Earth-based observer measure for this star’s intensity? Stars are nearly perfect blackbodies. (Note: ly stands for light-years.)
Answer in W/m2
Chapter 28 Solutions
College Physics
Ch. 28 - Which of Einstein's postulates of special...Ch. 28 - Is Earth an inertial frame of reference? Is the...Ch. 28 - When you are flying in a commercial jet, it may...Ch. 28 - Does motion affect the rate of a clock as measured...Ch. 28 - To whom does the elapsed time for a process seem...Ch. 28 - How could you travel far into the future without...Ch. 28 - To does an object seem greater in length, an...Ch. 28 - Relativistic effects such as time dilation and...Ch. 28 - Suppose an astronaut is moving relative to the...Ch. 28 - Explain the meaning of the terms "red shift" and...
Ch. 28 - What happens to the relativistic Doppler effect...Ch. 28 - Is the relativistic Doppler effect consistent with...Ch. 28 - All galaxies farther away than about 50106ly...Ch. 28 - How does modern relativity modify the law of...Ch. 28 - Is it possible for an external force to be acting...Ch. 28 - How are the classical laws of conservation of...Ch. 28 - What happens to the mass of water in a pot when it...Ch. 28 - Consider a thought experiment. You place an...Ch. 28 - The mass of the fuel in a nuclear reactor...Ch. 28 - We know that the velocity of an object with mass...Ch. 28 - Given the fact that light travels at c, can it...Ch. 28 - If you use an Earth-based telescope to project a...Ch. 28 - (a) What is if v=0.250c ? (b) If v=0.500c ?Ch. 28 - (a) What is if v=0.100c ? (b) If v=0.900c ?Ch. 28 - Particles called -mesons are produced by...Ch. 28 - Suppose a particle called a kaon is created by...Ch. 28 - A neutral -meson is a particle that can be...Ch. 28 - A neutron lives 900 s when at rest relative to an...Ch. 28 - If relativistic effects are to be less than 1%,...Ch. 28 - If relativistic effects are to be less than 3%,...Ch. 28 - (a) At what relative velocity is =1.50 ? (b) At...Ch. 28 - (a) At what relative velocity is =2.00 ? (b) At...Ch. 28 - Unreasonable Results (a) Find the value of for...Ch. 28 - A spaceship, 200 m long as seen on board, moves by...Ch. 28 - How fast would a 6.0 m-long sports car have to be...Ch. 28 - (a) How far does the muon in Example 28.1 travel...Ch. 28 - (a) How long would the muon in Example 28.1 have...Ch. 28 - (a) How long does it take the astronaut in Example...Ch. 28 - (a) How fast would an athlete need to be running...Ch. 28 - Unreasonable Results (a) Find the value of for...Ch. 28 - Unreasonable Results A spaceship is heading...Ch. 28 - Suppose a spaceship heading straight towards the...Ch. 28 - Repeat the previous problem with the ship heading...Ch. 28 - If a spaceship is approaching the Earth at 0.100c...Ch. 28 - (a) Suppose the speed of light were only 3000 m/s....Ch. 28 - If a galaxy moving away from the Earth has a speed...Ch. 28 - A space probe speeding towards the nearest star...Ch. 28 - If two spaceships are heading directly towards...Ch. 28 - Two planets are on a collision course, heading...Ch. 28 - When a missile is shot from one spaceship towards...Ch. 28 - What is the relative velocity of two spaceships if...Ch. 28 - Near the center of our galaxy, hydrogen gas is...Ch. 28 - A highway patrol officer uses a device that...Ch. 28 - Prove that for any relative velocity v between two...Ch. 28 - Show that for any relative velocity v between two...Ch. 28 - (a) All but the closest galaxies are receding from...Ch. 28 - Find the momentum of a helium nucleus having a...Ch. 28 - What is the momentum of an electron traveling at...Ch. 28 - (a) Find the momentum of a 1.00109 kg asteroid...Ch. 28 - (a) What is the momentum of a 2000 kg satellite...Ch. 28 - What is the velocity of an electron that has a...Ch. 28 - Find the velocity of a proton that has a momentum...Ch. 28 - (a) Calculate the speed of a 1.00- g particle of...Ch. 28 - (a) Calculate for a proton that has a momentum of...Ch. 28 - What is the rest energy of an electron, given its...Ch. 28 - Find the rest energy in joules and MeV of a...Ch. 28 - If the rest energies of a proton and a neutron...Ch. 28 - The Big Bang that began the universe is estimated...Ch. 28 - A supernova explosion of a 2.001031 kg star...Ch. 28 - (a) Using data from Table 7.1, calculate the mass...Ch. 28 - (a) Using data from Table 7.1, calculate the...Ch. 28 - There is approximately 1034 J of energy available...Ch. 28 - A muon has a rest mass energy of 105.7 MeV, and it...Ch. 28 - A -meson is a particle that decays into a muon...Ch. 28 - (a) Calculate the relativistic kinetic energy of a...Ch. 28 - Alpha decay is nuclear decay in which a helium...Ch. 28 - (a) Beta decay is nuclear decay in which an...Ch. 28 - A positron is an antimatter version of the...Ch. 28 - What is the kinetic energy in MeV of a -meson...Ch. 28 - Find the kinetic energy in MeV of a neutron with a...Ch. 28 - (a) Show that (pc)2/(m c 2)2=21. This means that...Ch. 28 - One cosmic ray neutron has a velocity of 0.250c...Ch. 28 - What is for a proton having a mass energy of...Ch. 28 - (a) What is the effective accelerating potential...Ch. 28 - (a) Using data from Table 7.1, find the mass...Ch. 28 - (a) Calculate the energy released by the...Ch. 28 - A Van de Graaff accelerator utilizes a 50.0 MV...Ch. 28 - Suppose you use an average of 500kWh of electric...Ch. 28 - (a) A nuclear power plant converts energy from...Ch. 28 - Nuclear-powered rockets were researched for some...Ch. 28 - The Sun produces energy at a rate of 4.001026 W by...Ch. 28 - Unreasonable Results A proton has a mass of...Ch. 28 - Construct Your Own Problem Consider a highly...Ch. 28 - Construct Your Own Problem Consider an astronaut...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
According to the logistic growth equation dNdt=rN(KN)K (A) the number of individuals added per unit time is gre...
Campbell Biology (11th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
5. In a type of parakeet known as a “budgie,” feather color is controlled by two genes. A yellow pigment is syn...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a galaxy moving away from the Earth has a speed of 1000 km/s and emits 656 nm light characteristic of hydrogen (the most common element in the universe). (a) What wavelength would we observe on Earth? (b) What type of electromagnetic radiation is this? (c) Why is the speed of Earth in its orbit negligible here?arrow_forwardAn Earth satellite used in the Global Positioning System moves in a circular orbit with period 11 h 58 min. (a) Determine the radius of its orbit. (b) Determine its speed. (c) The satellite contains an oscillator producing the principal nonmilitary GPS signal. Its frequency is 1 575.42 MHz in the reference frame of the satellite. When it is received on the Earths surface, what is the fractional change in this frequency due to time dilation, as described by special relativity? (d) The gravitational blueshift of the frequency according to general relativity is a separate effect. The magnitude of that fractional change is given by ff=Ugmc2 where Ug/m is the change in gravitational potential energy per unit mass between the two points at which the signal is observed. Calculate this fractional change in frequency. (e) What is the overall fractional change in frequency? Superposed on both of these relativistic effects is a Doppler shift that is generally much larger. It can be a redshift or a blueshift, depending on the motion of a particular satellite relative to a GPS receiver (Fig. P1.39).arrow_forwardIn December 2012, researchers announced the discovery of ultramassive black holes, with masses up to 40 billion times themass of the Sun (seen as the bright spot at the center of the galaxy near the center of Fig. P39.78). a. What is the Schwarz-schild radius of a black hole that has a mass 40 billion times that of the Sun? b. Suppose this black hole is 1.3 billion ly from theEarth. What is the angular radius of a galaxy that is 1.7 billion lybehind it, as viewed from the Earth? FIGURE P39.78arrow_forward
- The light from a heated atomic gas is shifted in frequency because of the random thermal motion of light-emitting atoms toward or away from an observer. Estimate the fractional Doppler shift (f/f0), assuming that light of frequency f0 is emitted in the rest frame of each atom, that the light-emitting atoms are iron atoms in a star at temperature 6000 K, and that the atoms are moving relative to an observer with the mean speed =8kBTm Must we use the relativistic Doppler shift formulas f=f01/c1/c for this calculation? Such thermal Doppler shifts are measurable and are used to determine stellar surface temperatures.arrow_forward(a) The distance to a star is approximately 6.74 ✕ 1018 m. If this star were to burn out today, in how many years would we see it disappear? ___ years(b) How long does it take sunlight to reach Earth? ____ minutes(c) How long does it take for a microwave radar signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 ✕ 105 km.)______ sarrow_forward(a)What will be the difference in the speed of an electromagnetic wave, in form of light, when it travels in galaxy space? (b) What will be the difference in the speed of an electromagnetic wave, in form of light, when it travels in water ?arrow_forward
- A distant galaxy emits light that has a wavelength of 655.7 nm. On earth, the wavelength of this light is measured to be 660.7 nm. (a)Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give youranswer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.)arrow_forwardA distant galaxy emits light that has a wavelength of 617.7 nm. On earth, the wavelength of this light is measured to be 623.6 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.) (a) The galaxy is (b) Number ◆ from the earth Units ✪arrow_forwardDo it asaparrow_forward
- Your answer is partially correct. A distant galaxy emits light that has a wavelength of 634.5 nm. On earth, the wavelength of this light is measured to be 639.0 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 x 108 m/s as the speed of light.) (a) The galaxy is (b) Number receding 2126000 from the earth. Units m/sarrow_forwardWhat do Maxwell’s equations say about the fundamental speed of the universe? Given the nature of the electromagnetic field, how does this relate to causality?arrow_forwardA distant galaxy emits light that has a wavelength of 655.6 nm. On earth, the wavelength of this light is measured to be 661.9 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY