Concept explainers
Which of Einstein's postulates of
The Einstein's postulates of special relativity include a concept that does not fit with the ideas of classical physics.
Explanation of Solution
Introduction:
Einstein gives the theory of relativity which states that for anybody to be in rest or motion it is determine by inertial frame of reference.
Second thing he states that the velocity of light is constant irrespective of its frame.
Second postulate of the theory which states that speed of light is independent of the frame of reference. This concept contradicts the idea of the classical physics.
Basic concept in classical physics is when any source moving toward or away from light than the speed of that object effect its motion. Suppose the object moving with the velocity 'v', then the resultant velocity of the object in classical physics is given by
Speed of light − speed of object = resultant velocity
But according to Einstein the speed of light is same in all frame of references.
Conclusion:
Thus, the second postulate of the Einstein theory of relativity contradict the concept of classical physics.
Want to see more full solutions like this?
Chapter 28 Solutions
College Physics
Additional Science Textbook Solutions
University Physics with Modern Physics (14th Edition)
University Physics Volume 1
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Essential University Physics: Volume 2 (3rd Edition)
College Physics: A Strategic Approach (3rd Edition)
- If astronauts could travel at v = 0.950c, we on Earth would say it takes (4.20/0.950) = 4.42 years to reach Alpha Centauri, 4.20 light-years away. The astronauts disagree. (a) How much time passes on the astronauts clocks? (b) What is the distance to Alpha Centauri as measured by the astronauts?arrow_forwardWith regard to reference frames, how does general relativity differ from special relativity?arrow_forwardTwo powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forward
- Joe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forward(a) Find the kinetic energy of a 78.0-kg spacecraft launched out of the solar system with speed 106 km/s by using the classical equation K=12mu2. (b) What If? Calculate its kinetic energy using the relativistic equation. (c) Explain the result of comparing the answers of parts (a) and (b).arrow_forwardWhich of Einstein’s postulates of special relativity includes a concept that does not ?t with the ideas of classical physics? Explain.arrow_forward
- Suppose our Sun is about to explode. In an effort to escape, we depart in a spacecraft at v = 0.800c and head toward the star Tau Ceti, 12.0 ly away. When we reach the midpoint of our journey from the Earth, we see our Sun explode, and, unfortunately, at the same instant, we see Tau Ceti explode as well. (a) In the spacecrafts frame of reference, should we conclude that the two explosions occurred simultaneously? If not, which occurred first? (b) What If? In a frame of reference in which the Sun and Tau Ceti are at rest, did they explode simultaneously? If not, which exploded first?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardDerive the equation p = 0.3Br using the concepts of centripetal acceleration (Motion in TWO and Three Dimensions (http://cnx.org/content/m58288/ latest/)) and relativistic momentum (Relativity)arrow_forward
- (a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardA muon formed high in the Earths atmosphere is measured by an observer on the Earths surface to travel at speed = 0.990c for a distance of 4.60 km before it decays into an electron, a neutrino, and an antineutrino (c+v+v). (a) For what time interval does the muon live as measured in its reference frame? (b) How far does the Earth travel as measured in the frame of the muon?arrow_forwardWe know that the velocity of an object with mass has an upper limit of c. Is there an upper limit on its momentum? Its energy? Explain.arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning