Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 28, Problem 23P
To determine
The fractional uncertainty omega particle’s rest energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A π0 meson is an unstable particle produced in high-energy particle collisions. Its rest energy is approximately 135 MeV, and it exists for a lifetime of only 8.70 × 10-17 s before decaying into two gamma rays. Using the uncertainty principle, estimate the fractional uncertainty Δm/m in its mass determination.
The average lifetime of a tau is about 2.9 ✕ 10−13 s. Estimate the minimum uncertainty in the energy of a tau. J
In solid helium the spacing between atoms is about 3Å . Helium contains 2 protons and 2 neutrons, so the mass of a helium atom is 6.6×10−27 kg. What is the smallest possible energy of a helium atom in solid helium? What temperature (in Kelvin) does this energy correspond with? (Boltzmann's constant is kb=1.38×10−23 J/K
Chapter 28 Solutions
Physics
Ch. 28.2 - Prob. 28.2CPCh. 28.2 - Prob. 28.1PPCh. 28.2 - Prob. 28.2PPCh. 28.4 - Prob. 28.4CPCh. 28.4 - Prob. 28.3PPCh. 28.6 - Prob. 28.6CPCh. 28.7 - Prob. 28.4PPCh. 28.9 - Prob. 28.5PPCh. 28.10 - Prob. 28.6PPCh. 28 - Prob. 1CQ
Ch. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 1MCQCh. 28 - Prob. 2MCQCh. 28 - Prob. 3MCQCh. 28 - Prob. 4MCQCh. 28 - Prob. 5MCQCh. 28 - Prob. 6MCQCh. 28 - Prob. 7MCQCh. 28 - Prob. 8MCQCh. 28 - Prob. 9MCQCh. 28 - Prob. 10MCQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 15PCh. 28 - Prob. 14PCh. 28 - Prob. 17PCh. 28 - Prob. 16PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 23PCh. 28 - Prob. 22PCh. 28 - Prob. 25PCh. 28 - Prob. 24PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 32PCh. 28 - Prob. 31PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 39PCh. 28 - Prob. 41PCh. 28 - Prob. 40PCh. 28 - Prob. 38PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 65PCh. 28 - Prob. 64PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74PCh. 28 - Prob. 75PCh. 28 - Prob. 76PCh. 28 - Prob. 77PCh. 28 - Prob. 79PCh. 28 - Prob. 78PCh. 28 - Prob. 80PCh. 28 - Prob. 81PCh. 28 - Prob. 82PCh. 28 - Prob. 83PCh. 28 - Prob. 84P
Knowledge Booster
Similar questions
- (a) What is the uncertainty in the energy released in the decay of a due to its short lifetime? (b) What traction of the decay energy is this, noting that the decay mode is (so that all the mass is destroyed)?arrow_forwardThe neutral pion nº is an unstable subatomic particle with a mass of 135.0 MeV/c² and a lifetime of about 8.4 x 10-17 s. What is the uncertainty of the energy of the nº in its ground state? What is the relative uncertainty Am/m of its mass?arrow_forward(c) A proton confined in a one dimensional box emits a 2.0 MeV gamma-ray photon in a quantum jump from n = 2 to n = 1. What is the length of the box? The mass of a proton is 1.67 x 1027 kg.arrow_forward
- An electron and a positron, with a mass of 9.1 x 10-31 kilograms, annihilate each other, producing two photons. What is the approximate energy of each emerging photon? It is 0.51 Mev 2.0 MeV 4.0 MeV 1.02 MeV It cannot be determined unless the frequency of the photon is known.arrow_forwardIf the uncertainty of a proton (E0=938 MeV) accelerated in a laboratory is 200 m/s, the uncertainty of its positionarrow_forwardIn the LHC, protons are accelerated to a total energy of 7.80 TeV. The mass of proton is 1.673 × 10−27 kg and Planck’s constant is 6.626 × 10−34 J·s. In the reference frame of the protons, how long does it take the protons to go around the tunnel once? I know the answer is 10.8ns. The solutions posted on here, do not come within 1% of that answer so I cannot trust that the steps are correct. Please give step by step instructions on how to arrive at 10.8 nsarrow_forward
- The decay energy of a short-lived nuclear excited state has an uncertainty of 2.1 eV due to its short lifetime. What is the smallest lifetime (in s) it can have? ____sarrow_forwardA proton is in an infinite box in the n =2 state and its energy is 1.71MeV. How much energy must be added to the proton to put it in a state with n =13 (in MeV)?arrow_forwardhd Px 5. Evaluate the following commutators: (Remember that i dx ). (a) [x.y] (b) [x.px] (c) [ps.py] (d) [x².px] (e) [(1/x).px] (f) [(1/x).p²] (g) [xpy-ypx.yp-zpyarrow_forward
- Calculate the speeds of the electrons from a 1 kV electron gun and from a 1 MV electron gun. The mass of the electron is 0.511 MeV or 9.109 * 10 ^ - 31 * kgarrow_forwardThe mean free path length of a 0.7-MeV photon in lead is closest to which of the following? (a)0.1039 cm (b)0.6697 cm (c)0.7038 cm (d)1.1394 cm (e)0.8776 cmarrow_forwardwhat will be an electron's slower speed when its initial speed is 6(10)^6 m/s is placed/enters at the 40v level and then travels to the 5v level?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning