PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES
PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES
10th Edition
ISBN: 9781337888509
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 1P

At the equator, near the surface of the Earth, the magnetic field is approximately 50.0 μT northward, and the electric field is about 100 N/C downward in fair weather. Find the gravitational, electric, and magnetic forces on an electron in this environment, assuming that the electron has an instantaneous velocity of 6.00 × 106 m/s directed to the east.

Expert Solution & Answer
Check Mark
To determine
The gravitational, electric and magnetic force on an electron

Answer to Problem 1P

The gravitational, electric and magnetic force on an electron is 8.93×1030N , 1.60×1017N upwards and 4.80×1017N downwards.

Explanation of Solution

Given info: The magnetic field is 50μT northward and electric field is 100N/C downward, velocity of electron is 6×106m/s

Explanation:

The formula to calculate the gravitational force is,

F=mg

Here,

m is the mass of the particle.

g is the acceleration due to gravity.

Substitute 9.11×1031Kg for m and 9.8m/s2 for g .

F=mg=(9.11×1031Kg)(9.8m/s2)=8.93×1030N

The formula to calculate the electric force is,

F=qE

Here,

q is the charge of electron.

E is the electric field.

Substitute 1.6×1019C for q and 100N/C for E

F=qE=(1.6×1019C)(100N/C)=1.60×1017N

The direction of electric force is upwards.

The formula to calculate the magnetic force is,

F=qvB

Here,

q is the charge of electron.

v is the velocity of electron.

B is the magnetic field.

Substitute 1.6×1019C for q , 50μT for B , 6×106m/s for v in above expression.

F=qvB=(1.6×1019C)(50μT)(6×106m/s)=4.80×1017N

The direction of magnetic force is downwards.

Conclusion:

Therefore, the gravitational, electric and magnetic force on an electron is 8.93×1030N , 1.60×1017N upwards and 4.80×1017N downwards.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.
No chatgpt pls will upvote
suggest a reason ultrasound cleaning is better than cleaning by hand?

Chapter 28 Solutions

PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES

Ch. 28 - A proton moves perpendicular to a uniform magnetic...Ch. 28 - An accelerating voltage of 2.50103 V is applied to...Ch. 28 - A proton (charge + e, mass mp), a deuteron (charge...Ch. 28 - Review. A 30.0-g metal hall having net charge Q =...Ch. 28 - Review. One electron collides elastically with a...Ch. 28 - Review. One electron collides elastically with a...Ch. 28 - Review. An electron moves in a circular path...Ch. 28 - A cyclotron designed to accelerate protons has a...Ch. 28 - Prob. 15PCh. 28 - Singly charged uranium-238 ions are accelerated...Ch. 28 - A cyclotron (Fig. 28.16) designed to accelerate...Ch. 28 - A particle in the cyclotron shown in Figure 28.16a...Ch. 28 - Prob. 19PCh. 28 - A straight wire earning a 3.00-A current is placed...Ch. 28 - A wire carries a steady current of 2.40 A. A...Ch. 28 - Why is the following situation impossible? Imagine...Ch. 28 - Review. A rod of mass 0.720 kg and radius 6.00 cm...Ch. 28 - Review. A rod of mass m and radius R rests on two...Ch. 28 - A wire having a mass per unit length of 0.500 g/cm...Ch. 28 - Consider the system pictured in Figure P28.26. A...Ch. 28 - A strong magnet is placed under a horizontal...Ch. 28 - In Figure P28.28, the cube is 40.0 cm on each...Ch. 28 - A magnetized sewing needle has a magnetic moment...Ch. 28 - A 50.0-turn circular coil of radius 5.00 cm can be...Ch. 28 - You are in charge of planning a physics magic show...Ch. 28 - You are working in your dream job: an assistant...Ch. 28 - A rectangular coil consists of N = 100 closely...Ch. 28 - A rectangular loop of wire has dimensions 0.500 m...Ch. 28 - A wire is formed into a circle having a diameter...Ch. 28 - A Hall-effect probe operates with a 120-mA...Ch. 28 - Prob. 37APCh. 28 - Figure 28.11 shows a charged particle traveling in...Ch. 28 - Within a cylindrical region of space of radius 100...Ch. 28 - Prob. 40APCh. 28 - Prob. 41APCh. 28 - (a) A proton moving with velocity v=ii experiences...Ch. 28 - A proton having an initial velocity of 20.0iMm/s...Ch. 28 - You have been called in as an expert witness in a...Ch. 28 - Prob. 45APCh. 28 - Why is the following situation impossible? Figure...Ch. 28 - A heart surgeon monitors the flow rate of blood...Ch. 28 - Review. (a) Show that a magnetic dipole in a...Ch. 28 - Consider an electron orbiting a proton and...Ch. 28 - Protons having a kinetic energy of 5.00 MeV (1 eV...Ch. 28 - Review. A wire having a linear mass density of...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY