Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.8, Problem 19E
Suppose that in an RSA Public Key Cryptosystem
Use two-digit blocks.
Use three-digit blocks.
What is the secret key
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An identity thief is trying to break into someone's computer that is
protected by a 4-digit passcode where numbers can repeat. The thief
knows that the first digit is 2 and the last digit is 7, 8 or 9. If the thief can
attempt 60 passcodes per hour, what is the longest that they could take
to break into the computer?
Answer:
Please provide me 100% accurate solution
Encrypt "Meet me at Central train station" using AutoKey Cipher. The key is "H".
Chapter 2 Solutions
Elements Of Modern Algebra
Ch. 2.1 - True or False Label each of the following...Ch. 2.1 - True or False Label each of the following...Ch. 2.1 - True or False
Label each of the following...Ch. 2.1 - True or False Label each of the following...Ch. 2.1 - True or False
Label each of the following...Ch. 2.1 - Prob. 6TFECh. 2.1 - Prob. 7TFECh. 2.1 - Prob. 8TFECh. 2.1 - Prob. 9TFECh. 2.1 - Prob. 10TFE
Ch. 2.1 - Prove that the equalities in Exercises 111 hold...Ch. 2.1 - Prob. 2ECh. 2.1 - Prob. 3ECh. 2.1 - Prob. 4ECh. 2.1 - Prove that the equalities in Exercises hold for...Ch. 2.1 - Prob. 6ECh. 2.1 - Prob. 7ECh. 2.1 - Prove that the equalities in Exercises hold for...Ch. 2.1 - Prove that the equalities in Exercises hold for...Ch. 2.1 - Prob. 10ECh. 2.1 - Prob. 11ECh. 2.1 - Let A be a set of integers closed under...Ch. 2.1 - Prob. 13ECh. 2.1 - In Exercises , prove the statements concerning the...Ch. 2.1 - Prob. 15ECh. 2.1 - Prob. 16ECh. 2.1 - In Exercises , prove the statements concerning the...Ch. 2.1 - In Exercises , prove the statements concerning the...Ch. 2.1 - In Exercises 13-24, prove the statements...Ch. 2.1 - In Exercises 1324, prove the statements concerning...Ch. 2.1 - Prob. 21ECh. 2.1 - Prob. 22ECh. 2.1 - Prob. 23ECh. 2.1 - Prob. 24ECh. 2.1 - 25. Prove that if and are integers and, then...Ch. 2.1 - Prove that the cancellation law for multiplication...Ch. 2.1 - Let x and y be in Z, not both zero, then x2+y2Z+.Ch. 2.1 - Prob. 28ECh. 2.1 - Prob. 29ECh. 2.1 - Prob. 30ECh. 2.1 - 31. Prove that if is positive and is negative,...Ch. 2.1 - 32. Prove that if is positive and is positive,...Ch. 2.1 - 33. Prove that if is positive and is negative,...Ch. 2.1 - Prob. 34ECh. 2.1 - Prob. 35ECh. 2.2 - Prove that the statements in Exercises are true...Ch. 2.2 - Prove that the statements in Exercises are true...Ch. 2.2 - Prob. 3ECh. 2.2 - Prove that the statements in Exercises are true...Ch. 2.2 - Prob. 5ECh. 2.2 - Prob. 6ECh. 2.2 - Prob. 7ECh. 2.2 - Prob. 8ECh. 2.2 - Prob. 9ECh. 2.2 - Prob. 10ECh. 2.2 - Prob. 11ECh. 2.2 - Prob. 12ECh. 2.2 - Prob. 13ECh. 2.2 - Prob. 14ECh. 2.2 - Prob. 15ECh. 2.2 - Prove that the statements in Exercises 116 are...Ch. 2.2 - 17. Use mathematical induction to prove that the...Ch. 2.2 - Let be integers, and let be positive integers....Ch. 2.2 - Let xandy be integers, and let mandn be positive...Ch. 2.2 - Let xandy be integers, and let mandn be positive...Ch. 2.2 - Let x and y be integers, and let m and n be...Ch. 2.2 - Let x and y be integers, and let m and n be...Ch. 2.2 - Let and be integers, and let and be positive...Ch. 2.2 - Prob. 24ECh. 2.2 - Prob. 25ECh. 2.2 - Prob. 26ECh. 2.2 - Use the equation (nr1)+(nr)=(n+1r) for 1rn. And...Ch. 2.2 - Use the equation. (nr1)+(nr)=(n+1r) for 1rn....Ch. 2.2 - Prob. 29ECh. 2.2 - Prob. 30ECh. 2.2 - Prob. 31ECh. 2.2 - In Exercise use mathematical induction to prove...Ch. 2.2 - In Exercise 3236 use mathematical induction to...Ch. 2.2 - Prob. 34ECh. 2.2 - Prob. 35ECh. 2.2 - Prob. 36ECh. 2.2 - Prob. 37ECh. 2.2 - Prob. 38ECh. 2.2 - Prob. 39ECh. 2.2 - Exercise can be generalized as follows: If and...Ch. 2.2 - Prob. 41ECh. 2.2 - Prob. 42ECh. 2.2 - In Exercise , use generalized induction to prove...Ch. 2.2 - Prob. 44ECh. 2.2 - In Exercise 4145, use generalized induction to...Ch. 2.2 - Use generalized induction and Exercise 43 to prove...Ch. 2.2 - Use generalized induction and Exercise 43 to prove...Ch. 2.2 - Assume the statement from Exercise 30 in section...Ch. 2.2 - Show that if the statement
is assumed to be true...Ch. 2.2 - Show that if the statement 1+2+3+...+n=n(n+1)2+2...Ch. 2.2 - Given the recursively defined sequence a1=1,a2=4,...Ch. 2.2 - Given the recursively defined sequence...Ch. 2.2 - Given the recursively defined sequence a1=0,a2=30,...Ch. 2.2 - Given the recursively defined sequence , and , use...Ch. 2.2 - The Fibonacci sequence fn=1,1,2,3,5,8,13,21,... is...Ch. 2.2 - Let f1,f2,...,fn be permutations on a nonempty set...Ch. 2.2 - Define powers of a permutation on by the...Ch. 2.3 - Label each of the following statements as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Prob. 7TFECh. 2.3 - Prob. 8TFECh. 2.3 - Label each of the following statement as either...Ch. 2.3 - Prob. 10TFECh. 2.3 - Prob. 1ECh. 2.3 - Prob. 2ECh. 2.3 - Write and as given in Exercises, find the q and...Ch. 2.3 - Write a and b as given in Exercises 316, find the...Ch. 2.3 - Write and as given in Exercises, find the q and...Ch. 2.3 - Prob. 6ECh. 2.3 - Prob. 7ECh. 2.3 - Prob. 8ECh. 2.3 - Prob. 9ECh. 2.3 - Write a and b as given in Exercises 316, find the...Ch. 2.3 - Write a and b as given in Exercises 316, find the...Ch. 2.3 - Write and as given in Exercises, find the and ...Ch. 2.3 - Write and as given in Exercises, find the and ...Ch. 2.3 - Write and as given in Exercises, find the and ...Ch. 2.3 - Write and as given in Exercises, find the and...Ch. 2.3 - Write a and b as given in Exercises 316, find the...Ch. 2.3 - 17. If a,b and c are integers such that ab and ac,...Ch. 2.3 - Let R be the relation defined on the set of...Ch. 2.3 - 19. If and are integers with and . Prove that...Ch. 2.3 - Let a,b,c and d be integers such that ab and cd....Ch. 2.3 - Prove that if and are integers such that and ,...Ch. 2.3 - Prove that if and are integers such that and ,...Ch. 2.3 - Let a and b be integers such that ab and ba. Prove...Ch. 2.3 - Let , and be integers . Prove or disprove that ...Ch. 2.3 - Let ,, and be integers. Prove or disprove that ...Ch. 2.3 - 26. Let be an integer. Prove that . (Hint:...Ch. 2.3 - Let a be an integer. Prove that 3|a(a+1)(a+2)....Ch. 2.3 - Let a be an odd integer. Prove that 8|(a21).Ch. 2.3 - Prob. 29ECh. 2.3 - Let be as described in the proof of Theorem. Give...Ch. 2.3 - Prob. 31ECh. 2.3 - Prob. 32ECh. 2.3 - Prob. 33ECh. 2.3 - Prob. 34ECh. 2.3 - Prob. 35ECh. 2.3 - Prob. 36ECh. 2.3 - In Exercises, use mathematical induction to prove...Ch. 2.3 - Prob. 38ECh. 2.3 - Prob. 39ECh. 2.3 - In Exercises, use mathematical induction to prove...Ch. 2.3 - In Exercises, use mathematical induction to prove...Ch. 2.3 - Prob. 42ECh. 2.3 - Prob. 43ECh. 2.3 - Prob. 44ECh. 2.3 - Prob. 45ECh. 2.3 - In Exercises, use mathematical induction to prove...Ch. 2.3 - Prob. 47ECh. 2.3 - Prob. 48ECh. 2.3 - 49. a. The binomial coefficients are defined in...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - Prob. 8TFECh. 2.4 - Prob. 9TFECh. 2.4 - Prob. 10TFECh. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - List all the primes lessthan 100.Ch. 2.4 - For each of the following pairs, write andin...Ch. 2.4 - In each part, find the greatest common divisor...Ch. 2.4 - Find the smallest integer in the given set.
{ and ...Ch. 2.4 - Prove that if p and q are distinct primes, then...Ch. 2.4 - Show that n2n+5 is a prime integer when n=1,2,3,4...Ch. 2.4 - If a0 and ab, then prove or disprove that (a,b)=a.Ch. 2.4 - If , prove .
Ch. 2.4 - Let , and be integers such that . Prove that if ,...Ch. 2.4 - Let be a nonzero integer and a positive integer....Ch. 2.4 - Let ac and bc, and (a,b)=1, prove that ab divides...Ch. 2.4 - Prove that if , , and , then .
Ch. 2.4 - Let and . Prove or disprove that .
Ch. 2.4 - Prob. 14ECh. 2.4 - Let r0=b0. With the notation used in the...Ch. 2.4 - Prob. 16ECh. 2.4 - Prob. 17ECh. 2.4 - Prob. 18ECh. 2.4 - Prove that if n is a positive integer greater than...Ch. 2.4 - Prob. 20ECh. 2.4 - Let (a,b)=1 and (a,c)=1. Prove or disprove that...Ch. 2.4 - Prob. 22ECh. 2.4 - Prob. 23ECh. 2.4 - Let (a,b)=1. Prove that (a,bn)=1 for all positive...Ch. 2.4 - Prove that if m0 and (a,b) exists, then...Ch. 2.4 - Prove that if d=(a,b), a=a0d, and b=b0d, then...Ch. 2.4 - Prove that the least common multiple of two...Ch. 2.4 - Let and be positive integers. If and is the...Ch. 2.4 - Prob. 29ECh. 2.4 - Let , and be three nonzero integers.
Use...Ch. 2.4 - Find the greatest common divisor of a,b, and c and...Ch. 2.4 - Use the second principle of Finite Induction to...Ch. 2.4 - Use the fact that 3 is a prime to prove that there...Ch. 2.4 - Prob. 34ECh. 2.4 - Prove that 23 is not a rational number.Ch. 2.5 - True or False
Label each of the following...Ch. 2.5 - True or False
Label each of the following...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - In this exercise set, all variables are...Ch. 2.5 - In this exercise set, all variables are...Ch. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Prob. 6ECh. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - Prob. 10ECh. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - Prob. 12ECh. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Prob. 14ECh. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Prob. 16ECh. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Prob. 20ECh. 2.5 - Prob. 21ECh. 2.5 - Prob. 22ECh. 2.5 - Prob. 23ECh. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - 25. Complete the proof of Theorem : If and is...Ch. 2.5 - Complete the proof of Theorem 2.24: If ab(modn)...Ch. 2.5 - Prove that if a+xa+y(modn), then xy(modn).Ch. 2.5 - 28. If and where , prove that .
Ch. 2.5 - 29. Find the least positive integer that is...Ch. 2.5 - 30. Prove that any positive integer is congruent...Ch. 2.5 - 31. If , prove that for every positive integer .
Ch. 2.5 - 32. Prove that if is an integer, then either or...Ch. 2.5 - Prove or disprove that if n is odd, then...Ch. 2.5 - Prob. 34ECh. 2.5 - Prob. 35ECh. 2.5 - Prob. 36ECh. 2.5 - Prob. 37ECh. 2.5 - Prob. 38ECh. 2.5 - Prob. 39ECh. 2.5 - In the congruences axb(modn) in Exercises 4053, a...Ch. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - In the congruences axb(modn) in Exercises 4053, a...Ch. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - Prob. 45ECh. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - Prob. 47ECh. 2.5 - Prob. 48ECh. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - In the congruences ax b (mod n) in Exercises...Ch. 2.5 - In the congruences axb(modn) in Exercises 4053, a...Ch. 2.5 - Prob. 53ECh. 2.5 - 54. Let be a prime integer. Prove Fermat's Little...Ch. 2.5 - 55. Prove the Chinese Remainder Theorem: Let , , ....Ch. 2.5 - 56. Solve the following systems of congruences.
...Ch. 2.5 - Prob. 57ECh. 2.5 - a. Prove that 10n(1)n(mod11) for every positive...Ch. 2.6 - Label each of the following statements as either...Ch. 2.6 - True or False
Label each of the following...Ch. 2.6 - Prob. 3TFECh. 2.6 - True or False
Label each of the following...Ch. 2.6 - True or False
Label each of the following...Ch. 2.6 - Prob. 6TFECh. 2.6 - Prob. 7TFECh. 2.6 - Prob. 8TFECh. 2.6 - Prob. 1ECh. 2.6 - a. Verify that [ 1 ][ 2 ][ 3 ][ 4 ]=[ 4 ] in 5. b....Ch. 2.6 - Make addition tables for each of the following....Ch. 2.6 - Make multiplication tables for each of the...Ch. 2.6 - Find the multiplicative inverse of each given...Ch. 2.6 - Prob. 6ECh. 2.6 - Find all zero divisors in each of the following n....Ch. 2.6 - Whenever possible, find a solution for each of the...Ch. 2.6 - Let [ a ] be an element of n that has a...Ch. 2.6 - Solve each of the following equations by finding [...Ch. 2.6 - In Exercise, Solve the systems of equations in.
...Ch. 2.6 - In Exercise, Solve the systems of equations...Ch. 2.6 - In Exercise 1114, Solve the systems of equations...Ch. 2.6 - Prob. 14ECh. 2.6 - Prove Theorem.
Theorem 2.30 Multiplication...Ch. 2.6 - Prob. 16ECh. 2.6 - Prob. 17ECh. 2.6 - Prob. 18ECh. 2.6 - Prob. 19ECh. 2.6 - Prob. 20ECh. 2.6 - Prob. 21ECh. 2.6 - Prob. 22ECh. 2.6 - Prob. 23ECh. 2.6 - Prob. 24ECh. 2.6 - Prob. 25ECh. 2.6 - Prove that a nonzero element in is a zero divisor...Ch. 2.7 - True or False
Label each of the following...Ch. 2.7 - Prob. 2TFECh. 2.7 - Prob. 3TFECh. 2.7 - Prob. 4TFECh. 2.7 - Suppose 4- bit words abcd are mapped onto 5- bit...Ch. 2.7 - Prob. 2ECh. 2.7 - Prob. 3ECh. 2.7 - Prob. 4ECh. 2.7 - Suppose a codding scheme is devised that maps -bit...Ch. 2.7 - Suppose the probability of erroneously...Ch. 2.7 - Prob. 7ECh. 2.7 - Suppose the probability of incorrectly...Ch. 2.7 - Prob. 9ECh. 2.7 - Is the identification number 11257402 correct if...Ch. 2.7 - Show that the check digit in bank identification...Ch. 2.7 - Suppose that the check digit is computed as...Ch. 2.7 - Prob. 13ECh. 2.7 - Prob. 14ECh. 2.7 - Verify that the check digit in a UPC symbol...Ch. 2.7 - Prob. 16ECh. 2.7 - Prob. 17ECh. 2.7 - Prob. 18ECh. 2.7 - Prob. 19ECh. 2.7 - Prob. 20ECh. 2.7 - Prob. 21ECh. 2.7 - Prob. 22ECh. 2.7 - Prob. 23ECh. 2.7 - Prob. 24ECh. 2.7 - Prob. 25ECh. 2.7 - Prob. 26ECh. 2.8 - Label each of the following statements as either...Ch. 2.8 - Prob. 2TFECh. 2.8 - Prob. 3TFECh. 2.8 - In the -letter alphabet A described in Example,...Ch. 2.8 - Prob. 2ECh. 2.8 - Prob. 3ECh. 2.8 - Prob. 4ECh. 2.8 - In the -letter alphabet described in Example, use...Ch. 2.8 - Prob. 6ECh. 2.8 - Prob. 7ECh. 2.8 - Use the alphabet C from the preceding problem and...Ch. 2.8 - Suppose that in a long ciphertext message the...Ch. 2.8 - Suppose that in a long ciphertext message the...Ch. 2.8 - Suppose the alphabet consists of a through z, in...Ch. 2.8 - Suppose the alphabet consists of a through, in...Ch. 2.8 - Prob. 13ECh. 2.8 - Prob. 14ECh. 2.8 - a. Excluding the identity cipher, how many...Ch. 2.8 - Rework Example 5 by breaking the message into...Ch. 2.8 - Suppose that in an RSA Public Key Cryptosystem,...Ch. 2.8 - Suppose that in an RSA Public Key Cryptosystem,...Ch. 2.8 - Suppose that in an RSA Public Key Cryptosystem....Ch. 2.8 -
Suppose that in an RSA Public Key Cryptosystem....Ch. 2.8 - Prob. 21ECh. 2.8 - Prob. 22ECh. 2.8 - Prob. 23ECh. 2.8 - Prob. 24ECh. 2.8 - Prob. 25ECh. 2.8 - Prob. 26E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- A realtor uses a lock to store the keys to a house that is for sale. The access code for the lock box consists of six digits. The first digit cannot be 5 and the last digit must be even. How many different codes are available?arrow_forwardA realtor uses a lock box to store the keys to a house. The access code for the lock box consists of 6 digits. The first cannot be 5 and the last digit must be even. How many different codes are available?arrow_forwardA realtor uses a lockbox to store the keys to a house that is for sale. The access code for the lock box consists of four digits. The first digit cannot be zero and the last digit must be off. How many different codes are availablearrow_forward
- Can you help me to find the decryption keyarrow_forwardEncode the number using the given public key. Encode the number M = 49 using the public key n = 77 and e = 37. Assume you are encoding the number using the RSA cryptosystem. Note: You can use the Modular Exponentiation calculator to help with the calculation.arrow_forwardmake a checklist on secondary school unit 1 on real numbersarrow_forward
- Need asap between now and 45 minutes, don't need all the work if that will take more time for you. Thanks.arrow_forwardPlease do not write the answer in step 1 or step 2 boxes. The website doesn't allow me to see the full explanatin. Could you write it on paper and then post it as a pic? Please.arrow_forwardAnswer this question with explanation 2. A social media account requires a 6-character password. Passwords should only contain numbers from 1 to 9 and capital letters A to E. How many different passwords can you generate a. if the characters should not repeat? b. if the characters repeat? c. if the first 3 characters are numbers and the last 3 characters are letters, which are all distinct?arrow_forward
- Use the values below to encrypt the numerical message m = 55. Use the following cryptoscheme: Encryption (m + k) mod N = c Decryption (c - k) mod N = m N = 66 K = 20 Example:5arrow_forwardEncrypt the message " MATH " by translating the letters into numbers and then applying the encryption function given, and then translating the numbers II back into letters. (a) f(p) = (17p+ 3) mod 26 (b) f(p) = (5p +14) mod 26 (c) f(p) = (19p+ 4) mod 26 Use A = 0,B = 1,C = 2,D = 3,E = 4,F = 5,G = 6,H = 7,1 = 8, J = 9, K = 10,L = 11,M = 12,N = 13,0 = 14,P = 15,Q = 16,R = 17, S = 18, T = 19,U = 20,V = 21,W = 22,X = 23,Y = 24,Z = 25 %3D %3Darrow_forwardTo sign-in an account, suppose '0' to '9' numbers and 'A' to 'Z' alphabets with upper case and lower case are used to form a nine-character PIN. A chosen number or alphabet can be reused. With that, Jane likes to create a nine-character PIN that contains at least three alphabets. Calculate how many ways the PIN can be created.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY