Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.7, Problem 4TFE
To determine
Whether the statement, “In a check digit scheme using congruence modulo 9, transposition errors will never be detected.” is true or false.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the RSA cipher with public key (n, e) = (713, 43) to encrypt the word "TEE." Start by encoding the letters of the word "TEE" into their numeric equivalents. Assume the letters of the alphabet are encoded as follows: A = 01, 8 = 02, C = 03, ..., Z = 26.
Since the code for T is 20 and since e = 43 = 32 + 8 + 2 + 1, the first letter of the encrypted message is found by computing 2043 mod 713.
20¹a (mod 713)
20² Eb (mod 713)
204 c (mod 713)
208 d (mod 713)
2032 = f (mod 713)
2016 e (mod 713)
b =
The result is that a =
C =
d =
e =
and f =
Thus, 2043 mod 713 = (a · b. d. f) mod 713 =
So the first number in the encrypted message is
Repeat these computations for each letter to find the complete encrypted message and enter your answer below. (Enter the message as a sequence of integer triples separated by a single space, where each triple is written using a fixed number of digits:
001 for 1, 002 for 2, ..., 099 for 99.)
Encrypt the word "WATER" by using the cipher function f(p)
=
(3p+7)mod 26.
Suppose that the most common letter and the second most common letter in a long ciphertext produced by encrypting a plaintext using an affine cipher f (p) = (ap + b) mod 26 are Z and J, respectively. What are the most likely values of a and b?
Chapter 2 Solutions
Elements Of Modern Algebra
Ch. 2.1 - True or False Label each of the following...Ch. 2.1 - True or False Label each of the following...Ch. 2.1 - True or False
Label each of the following...Ch. 2.1 - True or False Label each of the following...Ch. 2.1 - True or False
Label each of the following...Ch. 2.1 - Prob. 6TFECh. 2.1 - Prob. 7TFECh. 2.1 - Prob. 8TFECh. 2.1 - Prob. 9TFECh. 2.1 - Prob. 10TFE
Ch. 2.1 - Prove that the equalities in Exercises 111 hold...Ch. 2.1 - Prob. 2ECh. 2.1 - Prob. 3ECh. 2.1 - Prob. 4ECh. 2.1 - Prove that the equalities in Exercises hold for...Ch. 2.1 - Prob. 6ECh. 2.1 - Prob. 7ECh. 2.1 - Prove that the equalities in Exercises hold for...Ch. 2.1 - Prove that the equalities in Exercises hold for...Ch. 2.1 - Prob. 10ECh. 2.1 - Prob. 11ECh. 2.1 - Let A be a set of integers closed under...Ch. 2.1 - Prob. 13ECh. 2.1 - In Exercises , prove the statements concerning the...Ch. 2.1 - Prob. 15ECh. 2.1 - Prob. 16ECh. 2.1 - In Exercises , prove the statements concerning the...Ch. 2.1 - In Exercises , prove the statements concerning the...Ch. 2.1 - In Exercises 13-24, prove the statements...Ch. 2.1 - In Exercises 1324, prove the statements concerning...Ch. 2.1 - Prob. 21ECh. 2.1 - Prob. 22ECh. 2.1 - Prob. 23ECh. 2.1 - Prob. 24ECh. 2.1 - 25. Prove that if and are integers and, then...Ch. 2.1 - Prove that the cancellation law for multiplication...Ch. 2.1 - Let x and y be in Z, not both zero, then x2+y2Z+.Ch. 2.1 - Prob. 28ECh. 2.1 - Prob. 29ECh. 2.1 - Prob. 30ECh. 2.1 - 31. Prove that if is positive and is negative,...Ch. 2.1 - 32. Prove that if is positive and is positive,...Ch. 2.1 - 33. Prove that if is positive and is negative,...Ch. 2.1 - Prob. 34ECh. 2.1 - Prob. 35ECh. 2.2 - Prove that the statements in Exercises are true...Ch. 2.2 - Prove that the statements in Exercises are true...Ch. 2.2 - Prob. 3ECh. 2.2 - Prove that the statements in Exercises are true...Ch. 2.2 - Prob. 5ECh. 2.2 - Prob. 6ECh. 2.2 - Prob. 7ECh. 2.2 - Prob. 8ECh. 2.2 - Prob. 9ECh. 2.2 - Prob. 10ECh. 2.2 - Prob. 11ECh. 2.2 - Prob. 12ECh. 2.2 - Prob. 13ECh. 2.2 - Prob. 14ECh. 2.2 - Prob. 15ECh. 2.2 - Prove that the statements in Exercises 116 are...Ch. 2.2 - 17. Use mathematical induction to prove that the...Ch. 2.2 - Let be integers, and let be positive integers....Ch. 2.2 - Let xandy be integers, and let mandn be positive...Ch. 2.2 - Let xandy be integers, and let mandn be positive...Ch. 2.2 - Let x and y be integers, and let m and n be...Ch. 2.2 - Let x and y be integers, and let m and n be...Ch. 2.2 - Let and be integers, and let and be positive...Ch. 2.2 - Prob. 24ECh. 2.2 - Prob. 25ECh. 2.2 - Prob. 26ECh. 2.2 - Use the equation (nr1)+(nr)=(n+1r) for 1rn. And...Ch. 2.2 - Use the equation. (nr1)+(nr)=(n+1r) for 1rn....Ch. 2.2 - Prob. 29ECh. 2.2 - Prob. 30ECh. 2.2 - Prob. 31ECh. 2.2 - In Exercise use mathematical induction to prove...Ch. 2.2 - In Exercise 3236 use mathematical induction to...Ch. 2.2 - Prob. 34ECh. 2.2 - Prob. 35ECh. 2.2 - Prob. 36ECh. 2.2 - Prob. 37ECh. 2.2 - Prob. 38ECh. 2.2 - Prob. 39ECh. 2.2 - Exercise can be generalized as follows: If and...Ch. 2.2 - Prob. 41ECh. 2.2 - Prob. 42ECh. 2.2 - In Exercise , use generalized induction to prove...Ch. 2.2 - Prob. 44ECh. 2.2 - In Exercise 4145, use generalized induction to...Ch. 2.2 - Use generalized induction and Exercise 43 to prove...Ch. 2.2 - Use generalized induction and Exercise 43 to prove...Ch. 2.2 - Assume the statement from Exercise 30 in section...Ch. 2.2 - Show that if the statement
is assumed to be true...Ch. 2.2 - Show that if the statement 1+2+3+...+n=n(n+1)2+2...Ch. 2.2 - Given the recursively defined sequence a1=1,a2=4,...Ch. 2.2 - Given the recursively defined sequence...Ch. 2.2 - Given the recursively defined sequence a1=0,a2=30,...Ch. 2.2 - Given the recursively defined sequence , and , use...Ch. 2.2 - The Fibonacci sequence fn=1,1,2,3,5,8,13,21,... is...Ch. 2.2 - Let f1,f2,...,fn be permutations on a nonempty set...Ch. 2.2 - Define powers of a permutation on by the...Ch. 2.3 - Label each of the following statements as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Label each of the following statement as either...Ch. 2.3 - Prob. 7TFECh. 2.3 - Prob. 8TFECh. 2.3 - Label each of the following statement as either...Ch. 2.3 - Prob. 10TFECh. 2.3 - Prob. 1ECh. 2.3 - Prob. 2ECh. 2.3 - Write and as given in Exercises, find the q and...Ch. 2.3 - Write a and b as given in Exercises 316, find the...Ch. 2.3 - Write and as given in Exercises, find the q and...Ch. 2.3 - Prob. 6ECh. 2.3 - Prob. 7ECh. 2.3 - Prob. 8ECh. 2.3 - Prob. 9ECh. 2.3 - Write a and b as given in Exercises 316, find the...Ch. 2.3 - Write a and b as given in Exercises 316, find the...Ch. 2.3 - Write and as given in Exercises, find the and ...Ch. 2.3 - Write and as given in Exercises, find the and ...Ch. 2.3 - Write and as given in Exercises, find the and ...Ch. 2.3 - Write and as given in Exercises, find the and...Ch. 2.3 - Write a and b as given in Exercises 316, find the...Ch. 2.3 - 17. If a,b and c are integers such that ab and ac,...Ch. 2.3 - Let R be the relation defined on the set of...Ch. 2.3 - 19. If and are integers with and . Prove that...Ch. 2.3 - Let a,b,c and d be integers such that ab and cd....Ch. 2.3 - Prove that if and are integers such that and ,...Ch. 2.3 - Prove that if and are integers such that and ,...Ch. 2.3 - Let a and b be integers such that ab and ba. Prove...Ch. 2.3 - Let , and be integers . Prove or disprove that ...Ch. 2.3 - Let ,, and be integers. Prove or disprove that ...Ch. 2.3 - 26. Let be an integer. Prove that . (Hint:...Ch. 2.3 - Let a be an integer. Prove that 3|a(a+1)(a+2)....Ch. 2.3 - Let a be an odd integer. Prove that 8|(a21).Ch. 2.3 - Prob. 29ECh. 2.3 - Let be as described in the proof of Theorem. Give...Ch. 2.3 - Prob. 31ECh. 2.3 - Prob. 32ECh. 2.3 - Prob. 33ECh. 2.3 - Prob. 34ECh. 2.3 - Prob. 35ECh. 2.3 - Prob. 36ECh. 2.3 - In Exercises, use mathematical induction to prove...Ch. 2.3 - Prob. 38ECh. 2.3 - Prob. 39ECh. 2.3 - In Exercises, use mathematical induction to prove...Ch. 2.3 - In Exercises, use mathematical induction to prove...Ch. 2.3 - Prob. 42ECh. 2.3 - Prob. 43ECh. 2.3 - Prob. 44ECh. 2.3 - Prob. 45ECh. 2.3 - In Exercises, use mathematical induction to prove...Ch. 2.3 - Prob. 47ECh. 2.3 - Prob. 48ECh. 2.3 - 49. a. The binomial coefficients are defined in...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - Prob. 8TFECh. 2.4 - Prob. 9TFECh. 2.4 - Prob. 10TFECh. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - True or false
Label each of the following...Ch. 2.4 - List all the primes lessthan 100.Ch. 2.4 - For each of the following pairs, write andin...Ch. 2.4 - In each part, find the greatest common divisor...Ch. 2.4 - Find the smallest integer in the given set.
{ and ...Ch. 2.4 - Prove that if p and q are distinct primes, then...Ch. 2.4 - Show that n2n+5 is a prime integer when n=1,2,3,4...Ch. 2.4 - If a0 and ab, then prove or disprove that (a,b)=a.Ch. 2.4 - If , prove .
Ch. 2.4 - Let , and be integers such that . Prove that if ,...Ch. 2.4 - Let be a nonzero integer and a positive integer....Ch. 2.4 - Let ac and bc, and (a,b)=1, prove that ab divides...Ch. 2.4 - Prove that if , , and , then .
Ch. 2.4 - Let and . Prove or disprove that .
Ch. 2.4 - Prob. 14ECh. 2.4 - Let r0=b0. With the notation used in the...Ch. 2.4 - Prob. 16ECh. 2.4 - Prob. 17ECh. 2.4 - Prob. 18ECh. 2.4 - Prove that if n is a positive integer greater than...Ch. 2.4 - Prob. 20ECh. 2.4 - Let (a,b)=1 and (a,c)=1. Prove or disprove that...Ch. 2.4 - Prob. 22ECh. 2.4 - Prob. 23ECh. 2.4 - Let (a,b)=1. Prove that (a,bn)=1 for all positive...Ch. 2.4 - Prove that if m0 and (a,b) exists, then...Ch. 2.4 - Prove that if d=(a,b), a=a0d, and b=b0d, then...Ch. 2.4 - Prove that the least common multiple of two...Ch. 2.4 - Let and be positive integers. If and is the...Ch. 2.4 - Prob. 29ECh. 2.4 - Let , and be three nonzero integers.
Use...Ch. 2.4 - Find the greatest common divisor of a,b, and c and...Ch. 2.4 - Use the second principle of Finite Induction to...Ch. 2.4 - Use the fact that 3 is a prime to prove that there...Ch. 2.4 - Prob. 34ECh. 2.4 - Prove that 23 is not a rational number.Ch. 2.5 - True or False
Label each of the following...Ch. 2.5 - True or False
Label each of the following...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - Label each of the following statements as either...Ch. 2.5 - In this exercise set, all variables are...Ch. 2.5 - In this exercise set, all variables are...Ch. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Prob. 6ECh. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - Prob. 10ECh. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - Prob. 12ECh. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Prob. 14ECh. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Prob. 16ECh. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Find a solution x, 0xn, for each of the...Ch. 2.5 - Prob. 20ECh. 2.5 - Prob. 21ECh. 2.5 - Prob. 22ECh. 2.5 - Prob. 23ECh. 2.5 - Find a solution , , for each of the congruences ...Ch. 2.5 - 25. Complete the proof of Theorem : If and is...Ch. 2.5 - Complete the proof of Theorem 2.24: If ab(modn)...Ch. 2.5 - Prove that if a+xa+y(modn), then xy(modn).Ch. 2.5 - 28. If and where , prove that .
Ch. 2.5 - 29. Find the least positive integer that is...Ch. 2.5 - 30. Prove that any positive integer is congruent...Ch. 2.5 - 31. If , prove that for every positive integer .
Ch. 2.5 - 32. Prove that if is an integer, then either or...Ch. 2.5 - Prove or disprove that if n is odd, then...Ch. 2.5 - Prob. 34ECh. 2.5 - Prob. 35ECh. 2.5 - Prob. 36ECh. 2.5 - Prob. 37ECh. 2.5 - Prob. 38ECh. 2.5 - Prob. 39ECh. 2.5 - In the congruences axb(modn) in Exercises 4053, a...Ch. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - In the congruences axb(modn) in Exercises 4053, a...Ch. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - Prob. 45ECh. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - Prob. 47ECh. 2.5 - Prob. 48ECh. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - In the congruences in Exercises, and may not be...Ch. 2.5 - In the congruences ax b (mod n) in Exercises...Ch. 2.5 - In the congruences axb(modn) in Exercises 4053, a...Ch. 2.5 - Prob. 53ECh. 2.5 - 54. Let be a prime integer. Prove Fermat's Little...Ch. 2.5 - 55. Prove the Chinese Remainder Theorem: Let , , ....Ch. 2.5 - 56. Solve the following systems of congruences.
...Ch. 2.5 - Prob. 57ECh. 2.5 - a. Prove that 10n(1)n(mod11) for every positive...Ch. 2.6 - Label each of the following statements as either...Ch. 2.6 - True or False
Label each of the following...Ch. 2.6 - Prob. 3TFECh. 2.6 - True or False
Label each of the following...Ch. 2.6 - True or False
Label each of the following...Ch. 2.6 - Prob. 6TFECh. 2.6 - Prob. 7TFECh. 2.6 - Prob. 8TFECh. 2.6 - Prob. 1ECh. 2.6 - a. Verify that [ 1 ][ 2 ][ 3 ][ 4 ]=[ 4 ] in 5. b....Ch. 2.6 - Make addition tables for each of the following....Ch. 2.6 - Make multiplication tables for each of the...Ch. 2.6 - Find the multiplicative inverse of each given...Ch. 2.6 - Prob. 6ECh. 2.6 - Find all zero divisors in each of the following n....Ch. 2.6 - Whenever possible, find a solution for each of the...Ch. 2.6 - Let [ a ] be an element of n that has a...Ch. 2.6 - Solve each of the following equations by finding [...Ch. 2.6 - In Exercise, Solve the systems of equations in.
...Ch. 2.6 - In Exercise, Solve the systems of equations...Ch. 2.6 - In Exercise 1114, Solve the systems of equations...Ch. 2.6 - Prob. 14ECh. 2.6 - Prove Theorem.
Theorem 2.30 Multiplication...Ch. 2.6 - Prob. 16ECh. 2.6 - Prob. 17ECh. 2.6 - Prob. 18ECh. 2.6 - Prob. 19ECh. 2.6 - Prob. 20ECh. 2.6 - Prob. 21ECh. 2.6 - Prob. 22ECh. 2.6 - Prob. 23ECh. 2.6 - Prob. 24ECh. 2.6 - Prob. 25ECh. 2.6 - Prove that a nonzero element in is a zero divisor...Ch. 2.7 - True or False
Label each of the following...Ch. 2.7 - Prob. 2TFECh. 2.7 - Prob. 3TFECh. 2.7 - Prob. 4TFECh. 2.7 - Suppose 4- bit words abcd are mapped onto 5- bit...Ch. 2.7 - Prob. 2ECh. 2.7 - Prob. 3ECh. 2.7 - Prob. 4ECh. 2.7 - Suppose a codding scheme is devised that maps -bit...Ch. 2.7 - Suppose the probability of erroneously...Ch. 2.7 - Prob. 7ECh. 2.7 - Suppose the probability of incorrectly...Ch. 2.7 - Prob. 9ECh. 2.7 - Is the identification number 11257402 correct if...Ch. 2.7 - Show that the check digit in bank identification...Ch. 2.7 - Suppose that the check digit is computed as...Ch. 2.7 - Prob. 13ECh. 2.7 - Prob. 14ECh. 2.7 - Verify that the check digit in a UPC symbol...Ch. 2.7 - Prob. 16ECh. 2.7 - Prob. 17ECh. 2.7 - Prob. 18ECh. 2.7 - Prob. 19ECh. 2.7 - Prob. 20ECh. 2.7 - Prob. 21ECh. 2.7 - Prob. 22ECh. 2.7 - Prob. 23ECh. 2.7 - Prob. 24ECh. 2.7 - Prob. 25ECh. 2.7 - Prob. 26ECh. 2.8 - Label each of the following statements as either...Ch. 2.8 - Prob. 2TFECh. 2.8 - Prob. 3TFECh. 2.8 - In the -letter alphabet A described in Example,...Ch. 2.8 - Prob. 2ECh. 2.8 - Prob. 3ECh. 2.8 - Prob. 4ECh. 2.8 - In the -letter alphabet described in Example, use...Ch. 2.8 - Prob. 6ECh. 2.8 - Prob. 7ECh. 2.8 - Use the alphabet C from the preceding problem and...Ch. 2.8 - Suppose that in a long ciphertext message the...Ch. 2.8 - Suppose that in a long ciphertext message the...Ch. 2.8 - Suppose the alphabet consists of a through z, in...Ch. 2.8 - Suppose the alphabet consists of a through, in...Ch. 2.8 - Prob. 13ECh. 2.8 - Prob. 14ECh. 2.8 - a. Excluding the identity cipher, how many...Ch. 2.8 - Rework Example 5 by breaking the message into...Ch. 2.8 - Suppose that in an RSA Public Key Cryptosystem,...Ch. 2.8 - Suppose that in an RSA Public Key Cryptosystem,...Ch. 2.8 - Suppose that in an RSA Public Key Cryptosystem....Ch. 2.8 -
Suppose that in an RSA Public Key Cryptosystem....Ch. 2.8 - Prob. 21ECh. 2.8 - Prob. 22ECh. 2.8 - Prob. 23ECh. 2.8 - Prob. 24ECh. 2.8 - Prob. 25ECh. 2.8 - Prob. 26E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Suppose that the check digit is computed as described in Example . Prove that transposition errors of adjacent digits will not be detected unless one of the digits is the check digit. Example Using Check Digits Many companies use check digits for security purposes or for error detection. For example, an the digit may be appended to a -bit identification number to obtain the -digit invoice number of the form where the th bit, , is the check digit, computed as . If congruence modulo is used, then the check digit for an identification number . Thus the complete correct invoice number would appear as . If the invoice number were used instead and checked, an error would be detected, since .arrow_forwardTrue or False Label each of the following statement as either true or false. 1. Parity check schemes will always detect the position of an error.arrow_forwardSuppose that in an RSA Public Key Cryptosystem, the public key is. Encrypt the message "pay me later” using two-digit blocks and the -letter alphabet from Example 2. What is the secret key? Example 2 Translation Cipher Associate the letters of the "alphabet" with the integers. Let and define the mapping by where is the key, the number of positions from the plaintext to the ciphertext. If our alphabet consists of through, in natural order, followed by a blank, then we have "letters" that we associate with the integers as follows:arrow_forward
- Suppose that in an RSA Public Key Cryptosystem, the public key is e=13,m=77. Encrypt the message "go for it" using two-digit blocks and the 27-letter alphabet A from Example 2. What is the secret key d? Example 2 Translation Cipher Associate the n letters of the "alphabet" with the integers 0,1,2,3.....n1. Let A={ 0,1,2,3.....n-1 } and define the mapping f:AA by f(x)=x+kmodn where k is the key, the number of positions from the plaintext to the ciphertext. If our alphabet consists of a through z, in natural order, followed by a blank, then we have 27 "letters" that we associate with the integers 0,1,2,...,26 as follows: Alphabet:abcdef...vwxyzblankA:012345212223242526arrow_forwardSuppose that in a long ciphertext message the letter occurred most frequently, followed in frequency by. Using the fact that in the -letter alphabet, described in Example, "blank" occurs most frequently, followed in frequency by, read the portion of the message enciphered using an affine mapping on. Write out the affine mapping and its inverse. Example 2 Translation Cipher Associate the letters of the "alphabet" with the integers. Let and define the mapping by where is the key, the number of positions from the plaintext to the ciphertext. If our alphabet consists of through, in natural order, followed by a blank, then we have "letters" that we associate with the integers as follows:arrow_forwardSuppose that in an RSA Public Key Cryptosystem. Encrypt the message "algebra" using the -letter alphabet from Example 4. Use two-digit blocks. Use three-digit blocks. What is the secret key?arrow_forward
- True or false Label each of the following statement as either true or false. The least common multiple is as binary operation from to.arrow_forwardSuppose that in an RSA Public Key Cryptosystem. Encrypt the message "pascal" using the -letter alphabet from Example 4. Use two-digit blocks. Use three-digit blocks. What is the secret key?arrow_forwardRework Example 5 by breaking the message into two-digit blocks instead of three-digit blocks. What is the enciphered message using the two-digit blocks? Example 5: RSA Public Key Cryptosystem We first choose two primes (which are to be kept secret): p=17, and q=43. Then we compute m (which is to be made public): m=pq=1743=731. Next we choose e (to be made public), where e must be relatively prime to (p1)(q1)=1642=672. Suppose we take e=205. The Euclidean Algorithm can be used to verify that (205,672)=1. Then d is determined by the equation 1=205dmod672 Using the Euclidean Algorithm, we find d=613 (which is kept secret). The mapping f:AA, where A=0,1,2,...,730, defined by f(x)=x205mod731 is used to encrypt a message. Then the inverse mapping g:AA, defined by g(x)=x613mod731 can be used to recover the original message. Using the 27-letter alphabet as in Examples 2 and 3, the plaintext message no problem is translated into the message as follows: plaintext:noproblemmessage:13142615171401110412 The message becomes 13142615171401110412. This message must be broken into blocks mi, each of which is contained in A. If we choose three-digit blocks, each block mim=731. mi:13142615171401110412f(mi)=mi205mod731=ci:082715376459551593320 The enciphered message becomes 082715376459551593320 where we choose to report each ci with three digits by appending any leading zeros as necessary. To decipher the message, one must know the secret key d=613 and apply the inverse mapping g to each enciphered message block ci=f(mi): ci:082715376459551593320g(ci)=ci613mod731:13142615171401110412 Finally, by re-breaking the message back into two-digit blocks, one can translate it back into plaintext. Three-digitblockmessage:13142615171401110412Two-digitblockmessage:13142615171401110412Plaintext:noproblem The RSA Public Key Cipher is an example of an exponentiation cipher.arrow_forward
- Show that the check digit in bank identification numbers satisfies the congruence equation .arrow_forwardDifficult Intro to Elementary Number Theory Homework problem. This is not a computer programming homework problem.arrow_forwardA message is transmitted using a binary code of Os and 1s. Each transmitted bit (0 or 1) must pass through three relays before reaching a receiver. At each relay, the probability is .20 that the bit sent is different from the bit received (a reversal). Assume that relays operate independently of one another. Transmitter -> Relay 1 -> Relay 2 -> Relay 3 -> Receiver If a 1 is sent from the transmitter, what is the probability that a 1 is sent by all three relays?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License