
Concept explainers
(a)
To determine: The range of [IPTG] expression level which vary from 10% to 90%
Introduction:
Isopropyl β-D-1-thiogalactopyranoside (IPTG) binds to the lac repressor in similar way as allolactose. It releases the repressor in allosteric manner from the lac operator and the structural gene transcription of lac operon.
(a)

Explanation of Solution
Explanation:
10% expression of [IPTG] also represents 90% repression of. [IPTG] Hence, 10% of the repressor will show binding to the inducer, while remaining 90% of the repressor will be available for binding to the operator.
To calculate the range of 10% expression level of, the [IPTG] following formula is used with reference to equation 5-8.
So the range of expression level of [IPTG] is:
To calculate the range of 90% expression level of [IPTG],
So the range of expression level of [IPTG] is:
The range of expression of proteins of lac operon varies from 10-fold over the 10-fold expression of [IPTG] range.
The range of IPTG expression level varies from 10-90% or varies 10 folds.
(b)
To describe: The level of lac operon proteins present in E. coli cell before, during, and after IPTG induction.
Introduction:
Isopropyl β-D-1-thiogalactopyranoside (IPTG) binds to the lac repressor in similar way as allolactose. It releases the repressor in allosteric manner from the lac operator and the structural gene transcription of lac operon.
(b)

Explanation of Solution
Explanation:
IPTG induces the expression of lac operon proteins. The level of lac protein is very low before the induction, and the expression of lac protein will increase during the induction. After induction, the proteins synthesis will stop thereby, decreasing the expression of lac proteins. The lac proteins will increase during induction, and it decreases before and after the induction.
(c)
To explain: The lac operon lacks both the characteristics: A. that is either fully on or fully off, B. both states are stable.
Introduction:
In normal lac operon regulation, when the repressor is bound to lactose (inducer), it no longer binds to the operator DNA. Binding of lactose to the repressor alters the conformation of repressor protein so that it does not have affinity for the operator. The change in the shape of repressor gene will not allow it to bind to lactose resulting in inhibition of translation of structural gene.
(c)

Explanation of Solution
Explanation:
Lac operon has multiple expression levels, other than the on or off condition, as condition A is defined by only two states that are fully on or fully off, it is not followed by lac operon.
Lac operon expression depends on the binding of inducer molecule, as the removal of inducer decreases the expression of lac operon. Condition B is defined by “both states are stable” is not followed by lac operon.
Lac operon shows different expressions thus it cannot be fully on or fully off. It is also not present in stable condition as its expression depends on inducer molecule.
(d)
To explain: The proteins that are present and which promoter is being expressed for the states GFP-on and GFP-off
Introduction:
In normal lac operon regulation, when the repressor is bound to lactose (inducer), it no longer binds to the operator DNA. Binding of lactose to the repressor alters the conformation of the repressor protein so that it does not have affinity for the operator. The change in shape of repressor gene will not allow it to bind to lactose resulting in inhibition of translation of structural gene.
(d)

Explanation of Solution
Pictorial representation: Fig.1 represents the Plasmid (for the states GFP-on and GFP-ff)
Fig. 1: Plasmid (for the states GFP-on and GFP-off )
Explanation:
GFP-on: The repts gene expresses the repts protein in high level which represses the expression of OPλ, and GFP are expressed at high level during GFP-on state.
GFP-off: high level expression of Lac I represses the expression of OPlac, repts and GFP.
In GFP-on state repts and GFP proteins are present, and in GFP-off state Lac I protein is present.
(e)
To determine: The state from which IPTG would toggle the system
Introduction:
IPTG induces the expression of lac operon proteins. The level of lac protein is very low before the induction while the expression of lac protein will increase during the induction. After the induction, the proteins synthesis will stop thereby decreasing the expression of lac proteins.
(e)

Explanation of Solution
Explanation:
Presence of LacI protein enables the system for induction of IPTG, thus it induces the expression only in GFP-off state, and the induction is followed by expression of OPlac, repts and GFP. Thus, IPTG toggle the system from GFP-off to GFP-on.
The state from which IPTG would toggle the system is from GFP-off to GFP-on.
(f)
To determine: The state from which treatment with heat (42°C) would toggle the system.
Introduction:
In normal lac operon regulation, when the repressor is bound to lactose (inducer), it no longer binds to the operator DNA. Binding of lactose to the repressor alters the conformation of the repressor protein so that it does not have affinity for the operator. The change in shape of repressor gene will not allow it to bind to lactose resulting in inhibition of translation of structural gene.
(f)

Explanation of Solution
Explanation:
Heat affects the system only in presence of repts, which is expressed only in GFP-on state. The repts which is inactivated due to heat exposure results in OPλ repression followed by the expression of lac I repressor which represses the GFP expression. Hence, heat toggles the system from GFP-on to GFP-off.
(g)
To determine: The reason that plasmid has characteristics A and B.
Introduction:
In normal lac operon regulation, when the repressor is bound to lactose (inducer), it no longer binds to the operator DNA. Binding of lactose to the repressor alters the conformation of the repressor protein so that it does not have affinity for the operator. The change in shape of repressor gene will not allow it to bind to lactose resulting in inhibition of translation of structural gene.
(g)

Explanation of Solution
Explanation:
Plasmid system has two states of expression. In intermediate state, the system is not stable hence the plasmid follows the condition A which defines the only on and off condition.
Plasmid remains in a single state even after the removal of repressor from binding site, and as condition B defines that both the states are stable, it is followed by the plasmid.
Plasmid has characteristics A and B as it has only two states of expression, and it is stable in both states.
(h)
To explain: The characteristic of system A that demonstrates GFP expression level in individual cells at
Introduction:
IPTG induces the expression of lac operon proteins. The level of lac protein is very low before the induction while the expression of lac protein will increase during the induction. After the induction, the protein synthesis will stop thereby decreasing the expression of lac proteins.
(h)

Explanation of Solution
Explanation:
Characters of system A is defined by only on or only off state, at intermediate concentration of inducer X. In the system, some cells are GFP-on and some are GFP-off, hence they define the system A.
As the cell population have both type GFP-on and GFP-off cells in the system, the expression level of
The cells’ population contains only GFP-on and GFP-off cells in the system. It defines the condition A. As two types of expression are there in the system, it shows bimodal distribution of expression level of
Want to see more full solutions like this?
Chapter 28 Solutions
Lehninger Principles of Biochemistry
- Sodium fluoroacetate (FCH 2CO2Na) is a very toxic molecule that is used as rodentpoison. It is converted enzymatically to fluoroacetyl-CoA and is utilized by citratesynthase to generate (2R,3S)-fluorocitrate. The release of this product is a potentinhibitor of the next enzyme in the TCA cycle. Show the mechanism for theproduction of fluorocitrate and explain how this molecule acts as a competitiveinhibitor. Predict the effect on the concentrations of TCA intermediates.arrow_forwardIndicate for the reactions below which type of enzyme and cofactor(s) (if any) wouldbe required to catalyze each reaction shown. 1) Fru-6-P + Ery-4-P <--> GAP + Sed-7-P2) Fru-6-P + Pi <--> Fru-1,6-BP + H2O3) GTP + ADP <--> GDP + ATP4) Sed-7-P + GAP <--> Rib-5-P + Xyl-5-P5) Oxaloacetate + GTP ---> PEP + GDP + CO 26) DHAP + Ery-4-P <--> Sed-1,7-BP + H 2O7) Pyruvate + ATP + HCO3- ---> Oxaloacetate + ADP + Piarrow_forwardTPP is also utilized in transketolase reactions in the PPP. Give a mechanism for theTPP-dependent reaction between Xylulose-5-phosphate and Ribose-5-Phosphate toyield Glyceraldehyde-3-phosphate and Sedoheptulose-7-Phosphate.arrow_forward
- What is the difference between a ‘synthetase’ and a ‘synthase’?arrow_forwardIn three separate experiments, pyruvate labeled with 13C at C-1, C-2, or C-3 is introduced to cells undergoing active metabolism. Trace the fate of each carbon through the TCA cycle and show when each of these carbons produces 13CO2.a. Glucose is similarly labeled at C-2 with 13C. During which reaction will this labeled carbon be released as 13CO2?arrow_forwardDraw the Krebs Cycle and show the entry points for the amino acids Alanine,Glutamic Acid, Asparagine, and Valine into the Krebs Cycle. How many rounds of Krebs will be required to waste all Carbons of Glutamic Acidas CO2?arrow_forward
- Suppose the data below are obtained for an enzyme catalyzed reaction with and without the inhibitor I. (s)( mM) 0.2 0.4 0.8 1.0 2.0 4.0 V without i (mM/min) 5.0 7.5 10.0 10.7 12.5 13.6 V with I (mM/min) 3.0 5.0 7.5 8.3 10.7 12.5 Make a Lineweaver Burke plot for this data using graph paper or a spreadsheet Calculate KM and Vmax without inhibitor. What type of inhibition is observed? show graph and work 2. Give the Lineweaver Burk equation and define all the parameters. 3. When substrate concentration is much greater than Km, the rate of catalysis is almost equal to a. kcat b. none of these c. all of these d. Kd e. Vmaxarrow_forwardPlease explain the process of how an axon degenerates in the central nervous system following injury and how it affects the neuron/cell body, as well as presynaptic and postsynaptic neurons. Explain processes such as chromatolysis and how neurotrophin signaling works.arrow_forwardPlease help determine the Relative Response Ratio of my GC-MS laboratory: Laboratory: Alcohol Content in Hand Sanditizers Internal Standard: Butanol Standards of Alcohols: Methanol, Ethanol, Isopropyl, n-Propanol, Butanol Recorded Retention Times: 0.645, 0.692, 0.737, 0.853, 0.977 Formula: [ (Aanalyte / Canalyte) / (AIS / CIS) ]arrow_forward
- Please help determine the Relative Response Ratio of my GC-MS laboratory: Laboratory: Alcohol Content in Hand Sanditizers Internal Standard: Butanol Standards of Alcohols: Methanol, Ethanol, Isopropyl, n-Propanol, Butanol Recorded Retention Times: 0.645, 0.692, 0.737, 0.853, 0.977 Formula: [ (Aanalyte / Canalyte) / (AIS / CIS) ]arrow_forwardplease draw it for me and tell me where i need to modify the structurearrow_forwardPlease help determine the standard curve for my Kinase Activity in Excel Spreadsheet. Link: https://mnscu-my.sharepoint.com/personal/vi2163ss_go_minnstate_edu/_layouts/15/Doc.aspx?sourcedoc=%7B958f5aee-aabd-45d7-9f7e-380002892ee0%7D&action=default&slrid=9b178ea1-b025-8000-6e3f-1cbfb0aaef90&originalPath=aHR0cHM6Ly9tbnNjdS1teS5zaGFyZXBvaW50LmNvbS86eDovZy9wZXJzb25hbC92aTIxNjNzc19nb19taW5uc3RhdGVfZWR1L0VlNWFqNVc5cXRkRm4zNDRBQUtKTHVBQldtcEtWSUdNVmtJMkoxQzl3dmtPVlE_cnRpbWU9eEE2X291ZHIzVWc&CID=e2126631-9922-4cc5-b5d3-54c7007a756f&_SRM=0:G:93 Determine the amount of VRK1 is present 1. Average the data and calculate the mean absorbance for each concentration/dilution (Please over look for Corrections) 2. Blank Correction à Subtract 0 ug/mL blank absorbance from all readings (Please over look for Corrections) 3. Plot the Standard Curve (Please over look for Corrections) 4. Convert VRK1 concentration from ug/mL to g/L 5. Use the molar mass of VRK1 to convert to M and uM…arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





