Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 14OQ
(i)
To determine
The effect on the brightness of lamp B if the switch is closed.
(ii)
To determine
The effect on brightness of lamp C if the switch is closed.
(iii)
To determine
The effect of current on the battery if the switch is closed.
(iv)
To determine
The effect on potential difference across lamp A if the switch is closed.
(v)
To determine
The effect on potential difference across lamp C if the switch is closed.
(vi)
To determine
The effect on the total power delivered to the lamps by the battery if the switch is closed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
25.54. In the circuit shown in
Fig. P25.54, R is a variable resistor whose
value ranges from 0 to co, and a and b are
the terminals of a battery that has an emf
E = 15.0V and an internal resistance of
4.00 2. The ammeter and voltmeter are
idealized meters. As R varies over its full
range of values, what will be the largest
and smallest readings of (a) the voltmeter
and (b) the ammeter? (c) Sketch qualita-
tive graphs of the readings of both meters
as functions of R.
Figure P25.54
R
25.33
The circuit shown Figure E25.33
in Fig. E25.33 contains two
batteries, each with an emf and
an internal resistance, and two
resistors. Find (a) the current in 5.0 N
the circuit (magnitude and di-
rection) and (b) theterminal volt-
1.6 Ω 16.0V
ww
b.
a
90 Ω
1.4 N 8.0V
ww
age Vab of the 16.0-V battery.
E2
R1
R2
2. Find the charge on the capacitor after the switch has been left open for some
time, then closed for some period of time. We can assume that C = 2 µF, with
batteries of values E1 = 2V and E2 = 1 V, and resistor values R1
R2 = 0.25 2.
0.52 and
Chapter 28 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 28.1 - To maximize the percentage of the power from the...Ch. 28.2 - With the switch in the circuit of Figure 27.4a...Ch. 28.2 - With the switch in the circuit of Figure 27.6a...Ch. 28.2 - Prob. 28.4QQCh. 28.4 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQ
Ch. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Why is it possible for a bird to sit on a...Ch. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Is the direction of current in a battery always...Ch. 28 - Prob. 10CQCh. 28 - Prob. 1PCh. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and an...Ch. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Why is the following situation impossible? A...Ch. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - The following equations describe an electric...Ch. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54APCh. 28 - Prob. 55APCh. 28 - Prob. 56APCh. 28 - Prob. 57APCh. 28 - Why is the following situation impossible? A...Ch. 28 - Prob. 59APCh. 28 - Prob. 60APCh. 28 - When two unknown resistors are connected in series...Ch. 28 - Prob. 62APCh. 28 - Prob. 63APCh. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - Prob. 65APCh. 28 - Prob. 66APCh. 28 - Prob. 67APCh. 28 - Prob. 68APCh. 28 - Prob. 69APCh. 28 - Prob. 70APCh. 28 - Prob. 71APCh. 28 - Prob. 72APCh. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - Prob. 75APCh. 28 - Prob. 76APCh. 28 - Prob. 77APCh. 28 - Prob. 78APCh. 28 - Prob. 79APCh. 28 - Prob. 80APCh. 28 - Prob. 81APCh. 28 - Prob. 82CPCh. 28 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The- pair of capacitors in Figure P28.63 are fully charged by a 12.0-V battery. The battery is disconnected, and the switch is then closed. Alter 1.00 ms has elapsed, (a) how much charge remains 011 the 3.00-F capacitor? (b) How much charge remains on the 2.00-F capacitor? (c) What is the current in the resistor at this time?arrow_forwardConsider a series RC circuit as in Figure P28.38 for which R = 1.00 M, C = 5.00 F, and = 30.0 V. Find (a) the time constant of the circuit and (b) the maximum charge on the capacitor after the switch is thrown closed. (c) Find the current in the resistor 10.0 s after the switch is closed.arrow_forwardA 2 µF capacitor is connected to two resistors and a 10 V battery, as shown. Both switches A and B are open initially, and the capacitor is uncharged. Switch A is now closed. After a few seconds A is opened and after that B is closed. Just after B is closed what is the current through the 10 ohm resistor? A B 10 2 10 V 2 µF WW zero O 1.0 A O 2.0 A O 0.63 A O 0.37 Aarrow_forward
- A 10 MΩ resistor is connected in series with a 1.0 μF capacitor and a battery with emf 12.0 V. Before the switch is closed at time t=0,the capacitor is uncharged. What fraction of the final charge Qf is on the capacitor at t=10s?arrow_forwardIn Figure P28.67, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. (E = 8.50 V, r1 = 10 kN, and r2 = 16 kN.) 10.0 µF 3.00 k2 Figure P28.67 (a) Find the steady-state current in each resistor. I = 327 HA I2 = 327 HA 13-kn = 0 HA (b) Find the charge Q on the capacitor. 52 (c) The switch is opened at t = 0. Write an equation for the current IR, in R2 as a function of time. O (327 HA)e-t/(0.190 s) O (275 µA)et/(0.190 s) O (275 µA)e-t/(0.190 s) O (327 µA)et/(0.190 s) (d) Find the time that it takes for the charge on the capacitor to fall to one-fifth its initial value. msarrow_forwardIn Figure P28.67, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. (E = 8.50 V, r1 = 10 kN, and r2 = 16 kN.) 10.0 µF 3.00 k2 Figure P28.67 (a) Find the steady-state current in each resistor. I1 = 1.32 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. µA I2 = 4.32 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. µA I3-ko = 0 HA (b) Find the charge Q on the capacitor. 8.83 Your response differs from the correct answer by more than 10%. Double check your calculations. µC (c) The switch is opened at t = 0. Write an equation for the current IR, in R, as a function of time. O (327 µA)e-t/(0.190 s) O (275 µA)et/(0.190 s) O (275 µA)e-t/(0.190 s) O (327 µA)et/(0.190 s) (d) Find the time that it takes for the charge on the capacitor to fall to one-fifth its initial…arrow_forward
- 82. Switch S in is closed at time t 30, to begin charging an initially uncharged capacitance C= 15.0 µF through a resistor of resistance R = 20.0 Q. %3D S. cаpacitor of R %3D At what time is the potential across the capacitor equal to that across the resistor?arrow_forwardIn the circuit shown both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time? 15.0 20.0 50.0 N µF µF 30.0 Narrow_forwardIn the circuit shown in Figure OQ28.12, each battery is delivering energy to the circuit by electrical transmission. All the resistors have equal resistance. (i) Rank the electric potentials at points a, b. c, d, and e from highest to lowest, noting any cases of equality in the ranking. (ii) Rank the magnitudes of the currents at the same points from greatest to least, noting any cases of equality.arrow_forward
- p7arrow_forwardThe figure displays two circuits with a charged capacitor that is to be discharged through a resistor when a switch is closed. In figure (a) below, R₁ = 21.7 Q and C₁ = 5.08 µF. In figure (b) below, R₂ = 10.5 Q and C₂ = 8.00 μF. The ratio of the initial charges on the two capacitors is 902/901 = 1.82. At time t = 0, both switches are closed. At what time t do the two capacitors have the same charge? Number i 0.188 Units 00 ms (a) (b)arrow_forwardSwitch S in in the figure is closed at time t = 0, to begin charging an initially uncharged capacitor of capacitance C = 17.9 µF through a resistor of resistance R = 22.8 2. At what time is the potential across the capacitor equal to that across the resistor? Number i 0 Units H S W m R ◄► сarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY