(a)
The current in the
(a)
Answer to Problem 54AP
The current in
Explanation of Solution
Write the expression based on the junction rule.
Here,
Write the expression to obtain the loop rule.
Here,
Write the expression for the potential difference based on Ohm’s law.
Here,
The flow of current in the circuit is as shown in the figure below.
Figure-(1)
Here,
Write the equation of Kirchhoff’s voltage rule in the left loop.
Write the equation of Kirchhoff’s voltage rule in the right loop.
Conclusion:
Solve equation (I) and (II) to calculate
Therefore, the current in
(b)
The power delivered to the
(b)
Answer to Problem 54AP
The power delivered to the
Explanation of Solution
Write the expression to obtain the power across the
Here,
Conclusion:
Substitute
Therefore, the power delivered to the
(c)
The circuit in which Kirchhoff’s rule is required in find the value of current.
(c)
Answer to Problem 54AP
The Kirchhoff’s rule is required to find the value of current in case of circuit (c).
Explanation of Solution
In case of circuit (c), the current is flowing across each resistor and voltage drops at each resistor. As both the batteries of same emf are not in the same loop, thus, some amount of current will flow in the circuit. Hence, Kirchhoff’s rule is applicable in this case.
Conclusion:
In the case of the other two circuits, both the batteries of same emf are in the same loop. Thus they cancel out each other and no current flow in the circuit (b) and circuit (d).
Therefore, The Kirchhoff’s rule is required in find the value of current in case of circuit (c).
(d)
The circuit in which the smallest amount of power is delivered to the
(d)
Answer to Problem 54AP
The smallest power is delivered across the
Explanation of Solution
Conclusion:
The current flow diagram for circuit (b) is as shown in the figure below.
Figure-(2)
Write the equation of Kirchhoff’s voltage rule in right loop.
Write the expression based on junction rule.
Solve equation (III) and (IV) to calculate
Thus, the current across the circuit (b) is zero.
Therefore, the power delivered to across
The current flow diagram for circuit (c) is as shown in the figure below.
Figure-(3)
Write the equation of Kirchhoff’s voltage rule in the left loop.
Write the equation of Kirchhoff’s voltage rule in the left loop.
Solve equation (V) and (VI) to calculate
Write the expression to obtain the power across the
Here,
Substitute
Therefore, the power delivered to the
The current flow diagram for circuit (d) is as shown in the figure below.
Figure-(4)
Write the equation of Kirchhoff’s voltage rule in left loop.
Write the equation of Kirchhoff’s voltage rule in left loop.
Solve equation (VII) and (VIII) to calculate
Thus, the current across the circuit (d) is zero.
Therefore, the power delivered to across
Therefore the smallest power is delivered across
Want to see more full solutions like this?
Chapter 28 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Which of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forward
- Unlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning