THERMODYNAMICS LLF W/ CONNECT ACCESS
THERMODYNAMICS LLF W/ CONNECT ACCESS
9th Edition
ISBN: 9781264446889
Author: CENGEL
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2.8, Problem 122RP

The demand for electric power is usually much higher during the day than it is at night, and utility companies often sell power at night at much lower prices to encourage consumers to use the available power generation capacity and to avoid building new, expensive power plants that will be used only a short time during peak periods. Utilities are also willing to purchase power produced during the day from private parties at a high price.

Suppose a utility company is selling electric power for $0.05/kWh at night and is willing to pay $0.12/kWh for power produced during the day. To take advantage of this opportunity, an entrepreneur is considering building a large reservoir 40 m above the lake level, pumping water from the lake to the reservoir at night using cheap power, and letting the water flow from the reservoir back to the lake during the day, producing power as the pump–motor operates as a turbine–generator during reverse flow. Preliminary analysis shows that a water flow rate of 2 m3/s can be used in either direction. The combined pump–motor and turbine–generator efficiencies are expected to be 75 percent each. Disregarding the frictional losses in piping and assuming the system operates for 10 h each in the pump and turbine modes during a typical day, determine the potential revenue this pump–turbine system can generate per year.

FIGURE P2–122

Chapter 2.8, Problem 122RP, The demand for electric power is usually much higher during the day than it is at night, and utility

Expert Solution & Answer
Check Mark
To determine

The potential revenue generated per year for the system.

Answer to Problem 122RP

The potential revenue generated per year for the system is $66,839/year_.

Explanation of Solution

Calculate the minimum power required to pump water from the lower reservoir to the higher reservoir.

W˙max,turbine=W˙min,pump=W˙ideal=ΔE˙mech=m˙Δemech

   =m˙Δpe=m˙gΔz=ρV˙gΔz (I)

Here, the maximum power of turbine is W˙max,turbine, the minimum power of pump is W˙min,pump, ideal power is W˙ideal, the rate of change in the mechanical power in the rate form is ΔE˙mech, mass flow rate of water is m˙, the mechanical energy change of a fluid is Δemech, acceleration due to gravity is g, change in the potential energy per unit mass is Δpe, change in the height of a reservoir from the base of the lake is Δz, density of water is ρ, and volume flow rate of water is V˙.

Calculate the actual pump electric power.

W˙pump,elect=W˙idealηpump-motor (II)

Here, the efficiency of combined pump-motor is ηpump-motor.

Calculate the turbine electric power.

W˙turbine=ηturbine-genW˙ideal (III)

Here, the efficiency of combined turbine-geneator is ηturbine-gen.

Calculate the power consumption cost of the pump.

Cost=W˙pump,electΔt×Unitprice (IV)

Here, change in time of each in the pump and turbine modes during a typical day is Δt.

Calculate the revenue generated by the turbine.

Revenue=W˙turbineΔt×Unitprice (V)

Calculate the net income per year.

Netincome=RevenueCost (VI)

Conclusion:

Substitute 1000kg/m3 for ρ, 2m3/s for V˙, 9.81m/s2 for g, and 40 m for Δz in Equation (I).

W˙max,turbine=(1000kg/m3)(2m3/s)(9.81m/s2)(40m)=(1000kg/m3)(2m3/s)(9.81m/s2)(40m)(1N1kgm/s2)(1kW1000Nm/s)=784.8kW

Substitute 784.8 kW for W˙ideal and 0.75 for ηpump-motor in Equation (II).

W˙pump,elect=784.8kW0.75=1046kW

Substitute 784.8 kW for W˙ideal and 0.75 for ηpump-motor in Equation (III).

W˙turbine=(0.75)784.8kW=588.6kW

Substitute 1046 kW for W˙pump,elect, 365×10h/year for Δt, and $0.05/kWh for Unit price in Equation (IV).

Cost=(1046kW)(365×10h/year)×($0.05/kWh)=$190,968/year

Substitute 588.6 kW for W˙turbine, 365×10h/year for Δt, and $0.12/kWh for Unit price in Equation (V).

Revenue=(588.6kW)(365×10h/year)×($0.12/kWh)=$257,807/year

Substitute $190,968/year for cost and $257,807/year for revenue in Equation (VI).

Netincome=$257,807/year$190,968/year=$66,839/year

Thus, the potential revenue generated per year for the system is $66,839/year_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom ↑ Z C BY NC SA b x B у D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in с 4.5 in The tension in rope AB is lb The tension in rope AC is lb The tension in rope AD is lb
The airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. a.) If = 11.3°, determine the thrust and lift forces required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle - and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. Уллу Fdrag 10. Ө Fthrust cc 10 2013 Michael Swanbom BY NC SA Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to lbs. The lift force is equal to Part (b) The trajectory angle is equal to deg. The lift force is equal to lbs. lbs.
The hoist consists of a single rope and an arrangement of frictionless pulleys as shown. If the angle 0 = 59°, determine the force that must be applied to the rope, Frope, to lift a load of 4.4 kN. The three-pulley and hook assembly at the center of the system has a mass of 22.5 kg with a center of mass that lies on the line of action of the force applied to the hook. e ΘΕ B CC 10 BY NC SA 2013 Michael Swanbom Fhook Note the figure may not be to scale. Frope = KN HO Frope

Chapter 2 Solutions

THERMODYNAMICS LLF W/ CONNECT ACCESS

Ch. 2.8 - Determine the specific kinetic energy of a mass...Ch. 2.8 - Calculate the total potential energy, in Btu, of...Ch. 2.8 - Determine the specific potential energy, in kJ/kg,...Ch. 2.8 - An object whose mass is 100 kg is located 20 m...Ch. 2.8 - A water jet that leaves a nozzle at 60 m/s at a...Ch. 2.8 - Consider a river flowing toward a lake at an...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - What is the caloric theory? When and why was it...Ch. 2.8 - In what forms can energy cross the boundaries of a...Ch. 2.8 - What is an adiabatic process? What is an adiabatic...Ch. 2.8 - When is the energy crossing the boundaries of a...Ch. 2.8 - Consider an automobile traveling at a constant...Ch. 2.8 - A room is heated by an iron that is left plugged...Ch. 2.8 - A room is heated as a result of solar radiation...Ch. 2.8 - A gas in a pistoncylinder device is compressed,...Ch. 2.8 - A small electrical motor produces 5 W of...Ch. 2.8 - A car is accelerated from rest to 85 km/h in 10 s....Ch. 2.8 - A construction crane lifts a prestressed concrete...Ch. 2.8 - Determine the torque applied to the shaft of a car...Ch. 2.8 - A spring whose spring constant is 200 lbf/in has...Ch. 2.8 - How much work, in kJ, can a spring whose spring...Ch. 2.8 - A ski lift has a one-way length of 1 km and a...Ch. 2.8 - The engine of a 1500-kg automobile has a power...Ch. 2.8 - A damaged 1200-kg car is being towed by a truck....Ch. 2.8 - As a spherical ammonia vapor bubble rises in...Ch. 2.8 - A steel rod of 0.5 cm diameter and 10 m length is...Ch. 2.8 - What are the different mechanisms for transferring...Ch. 2.8 - For a cycle, is the net work necessarily zero? For...Ch. 2.8 - On a hot summer day, a student turns his fan on...Ch. 2.8 - Water is being heated in a closed pan on top of a...Ch. 2.8 - An adiabatic closed system is accelerated from 0...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A vertical pistoncylinder device contains water...Ch. 2.8 - At winter design conditions, a house is projected...Ch. 2.8 - A water pump increases the water pressure from 15...Ch. 2.8 - The lighting needs of a storage room are being met...Ch. 2.8 - A university campus has 200 classrooms and 400...Ch. 2.8 - Consider a room that is initially at the outdoor...Ch. 2.8 - An escalator in a shopping center is designed to...Ch. 2.8 - Consider a 2100-kg car cruising at constant speed...Ch. 2.8 - Prob. 51PCh. 2.8 - What is mechanical efficiency? What does a...Ch. 2.8 - How is the combined pumpmotor efficiency of a pump...Ch. 2.8 - Can the combined turbinegenerator efficiency be...Ch. 2.8 - Consider a 2.4-kW hooded electric open burner in...Ch. 2.8 - The steam requirements of a manufacturing facility...Ch. 2.8 - Reconsider Prob. 256E. Using appropriate software,...Ch. 2.8 - A 75-hp (shaft output) motor that has an...Ch. 2.8 - Prob. 59PCh. 2.8 - An exercise room has six weight-lifting machines...Ch. 2.8 - A room is cooled by circulating chilled water...Ch. 2.8 - The water in a large lake is to be used to...Ch. 2.8 - A 7-hp (shaft) pump is used to raise water to an...Ch. 2.8 - A geothermal pump is used to pump brine whose...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - Reconsider Prob. 265. Using appropriate software,...Ch. 2.8 - Water is pumped from a lower reservoir to a higher...Ch. 2.8 - An 80-percent-efficient pump with a power input of...Ch. 2.8 - Water is pumped from a lake to a storage tank 15 m...Ch. 2.8 - Large wind turbines with a power capacity of 8 MW...Ch. 2.8 - A hydraulic turbine has 85 m of elevation...Ch. 2.8 - The water behind Hoover Dam in Nevada is 206 m...Ch. 2.8 - An oil pump is drawing 44 kW of electric power...Ch. 2.8 - A wind turbine is rotating at 15 rpm under steady...Ch. 2.8 - How does energy conversion affect the environment?...Ch. 2.8 - What is acid rain? Why is it called a rain? How do...Ch. 2.8 - Why is carbon monoxide a dangerous air pollutant?...Ch. 2.8 - What is the greenhouse effect? How does the excess...Ch. 2.8 - What is smog? What does it consist of? How does...Ch. 2.8 - Consider a household that uses 14,000 kWh of...Ch. 2.8 - When a hydrocarbon fuel is burned, almost all of...Ch. 2.8 - Prob. 82PCh. 2.8 - A typical car driven 20,000 km a year emits to the...Ch. 2.8 - Prob. 84PCh. 2.8 - What are the mechanisms of heat transfer?Ch. 2.8 - Which is a better heat conductor, diamond or...Ch. 2.8 - How does forced convection differ from natural...Ch. 2.8 - What is a blackbody? How do real bodies differ...Ch. 2.8 - Define emissivity and absorptivity. What is...Ch. 2.8 - Does any of the energy of the sun reach the earth...Ch. 2.8 - The inner and outer surfaces of a 5-m 6-m brick...Ch. 2.8 - The inner and outer surfaces of a 0.5-cm-thick 2-m...Ch. 2.8 - Reconsider Prob. 292. Using appropriate software,...Ch. 2.8 - Prob. 94PCh. 2.8 - Prob. 95PCh. 2.8 - Prob. 96PCh. 2.8 - Prob. 97PCh. 2.8 - For heat transfer purposes, a standing man can be...Ch. 2.8 - Prob. 99PCh. 2.8 - Prob. 100PCh. 2.8 - A 1000-W iron is left on the ironing board with...Ch. 2.8 - A 7-cm-external-diameter, 18-m-long hot-water pipe...Ch. 2.8 - A thin metal plate is insulated on the back and...Ch. 2.8 - Reconsider Prob. 2103. Using appropriate software,...Ch. 2.8 - The outer surface of a spacecraft in space has an...Ch. 2.8 - Prob. 106PCh. 2.8 - A hollow spherical iron container whose outer...Ch. 2.8 - Some engineers have developed a device that...Ch. 2.8 - Consider a classroom for 55 students and one...Ch. 2.8 - Consider a homeowner who is replacing his...Ch. 2.8 - Prob. 111RPCh. 2.8 - The U.S. Department of Energy estimates that...Ch. 2.8 - A typical household pays about 1200 a year on...Ch. 2.8 - Prob. 114RPCh. 2.8 - Prob. 115RPCh. 2.8 - Prob. 116RPCh. 2.8 - Consider a TV set that consumes 120 W of electric...Ch. 2.8 - Water is pumped from a 200-ft-deep well into a...Ch. 2.8 - Consider a vertical elevator whose cabin has a...Ch. 2.8 - Prob. 120RPCh. 2.8 - In a hydroelectric power plant, 65 m3/s of water...Ch. 2.8 - The demand for electric power is usually much...Ch. 2.8 - The pump of a water distribution system is powered...Ch. 2.8 - Prob. 124RPCh. 2.8 - A 2-kW electric resistance heater in a room is...Ch. 2.8 - Prob. 126FEPCh. 2.8 - A 75-hp compressor in a facility that operates at...Ch. 2.8 - On a hot summer day, the air in a well-sealed room...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A 900-kg car cruising at a constant speed of 60...Ch. 2.8 - Prob. 131FEPCh. 2.8 - Prob. 132FEPCh. 2.8 - A 2-kW pump is used to pump kerosene ( = 0.820...Ch. 2.8 - Prob. 134FEPCh. 2.8 - Prob. 135FEPCh. 2.8 - Prob. 136FEPCh. 2.8 - Prob. 137FEPCh. 2.8 - Heat is transferred steadily through a...Ch. 2.8 - The roof of an electrically heated house is 7 m...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
The ____________ is always transparent.

Web Development and Design Foundations with HTML5 (8th Edition)

What is an uninitialized variable?

Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)

What types of coolant are used in vehicles?

Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license