Concept explainers
Consider a vertical elevator whose cabin has a total mass of 800 kg when fully loaded and 150 kg when empty. The weight of the elevator cabin is partially balanced by a 400-kg counterweight that is connected to the top of the cabin by cables that pass through a pulley located on top of the elevator well. Neglecting the weight of the cables and assuming the guide rails and the pulleys to be frictionless, determine (a) the power required while the fully loaded cabin is rising at a constant speed of 1.2 m/s and (b) the power required while the empty cabin is descending at a constant speed of 1.2 m/s. What would your answer be to (a) if no counterweight were used? What would your answer be to (b) if a friction force of 800 N has developed between the cabin and the guide rails?
(a)
The power required to raise the cabin at a constant speed of 1.2 m/s.
The power required if no counterweight were used.
Answer to Problem 119RP
The power required to raise the cabin at a constant speed of 1.2 m/s is
The power if no counterweight were used is
Explanation of Solution
Calculate the power required to raise the cabin at a constant speed of 1.2 m/s.
Here, the weight of the elevator cabin is m, acceleration due to gravity is g, and constant speed is V.
Since there is no usage of counterweight, the mass is double to 800 kg.
Calculate the power if no counterweight were used.
Conclusion:
Substitute 400 kg for m,
Thus, the power required to raise the cabin at a constant speed of 1.2 m/s is
Substitute 4.71 kW for
Thus, the power if no counterweight were used is
(b)
The power required to raise the mass of 250 kg at a constant speed of 1.2 m/s if the empty cabon is descending.
The total power needed if a friction force of 800 N has developed between the cabin and the guide rails.
Answer to Problem 119RP
The power required to raise the mass of 250 kg at a constant speed of 1.2 m/s if the empty cabon is descending is
The total power needed if a friction force of 800 N has developed between the cabin and the guide rails is
Explanation of Solution
Calculate the power required to raise the cabin at a constant speed of 1.2 m/s.
Here, the weight of the elevator cabin is m, acceleration due to gravity is g, and constant speed is V.
Calculate the friction power if the friction force of 800 N develops between the cabin and the guide rails.
Here, friction force is
Calculate the total power needed if a friction force of 800 N has developed between the cabin and the guide rails.
Conclusion:
Calculate the mass as the counterweight is ascending.
Substitute 250 kg for m,
Thus, the power required to raise the mass of 250 kg at a constant speed of 1.2 m/s if the empty cabon is descending is
Substitute 800 N for
Substitute 0.96 kW for
Thus, the total power needed if a friction force of 800 N has developed between the cabin and the guide rails is
Want to see more full solutions like this?
Chapter 2 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Modern Database Management
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Database Concepts (8th Edition)
Fluid Mechanics: Fundamentals and Applications
- The primary material used in the production of glass products is silica sand. True or Falsearrow_forwardWhich one of the following is the most common polymer type in fiber-reinforced polymer composites? thermosets thermoplastics elastomers none of the abovearrow_forwardA pattern for a product is larger than the actual finished part. True or Falsearrow_forward
- Two forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forwardNo chatgpt pls will upvotearrow_forward101 the three shafts if the diameter ratio is 2 (D/d = 2)? Ans. na, tension = 1.21, na, bending = 1.19, na, torsion = 1.17. 6.32 A material with a yield strength of S₁ = 350 MPa is subjected to the stress state shown in Sketch c. What is the factor of safety based on the maximum shear stress and distortion energy theories? Ans. For MSST, n, = 11.67. 50 MPa 85 MPa 20 MPa 70 MPa Sketch c, for Problems 6.32 and 6.33arrow_forward
- Can you draw the left view of the first orthographic projectionarrow_forwardImportant: I've posted this question twice and received incorrect answers. I've clearly stated that I don't require AI-generated working out. I need a genuine, expert-written solution with proper working. If you can't provide that, refer this question to someone who can please!. Note: Please provide a clear, step-by-step handwritten solution (no AI involvement). I require an expert-level answer and will assess it based on quality and accuracy with that I'll give it a thumbs up or down!. Hence, refer to the provided image for clarity. Double-check everything for correctness before submitting. Thank you!arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question:arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY