Concept explainers
A copper wire of square cross section is oriented vertically. The four sides of the wire face north, south, east, and west. There is a uniform magnetic field directed from east to west, and the wire carries current downward. Which side of the wire is at the highest electric potential? (i) North side; (ii) south side; (iii) east side; (iv) west side.
Want to see the full answer?
Check out a sample textbook solutionChapter 27 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
Introduction to Electrodynamics
Modern Physics
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
The Cosmic Perspective (8th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Conceptual Physical Science (6th Edition)
- Does increasing the magnitude of a uniform magnetic field through which a charge is traveling necessarily mean increasing the magnetic force on the charge? Does changing the direction of the field necessarily mean a change in the force on the charge?arrow_forwardCalculate the magnitude of the magnetic field at a point 25.0 cm from a long, thin conductor carrying a current of 2.00 A.arrow_forwardTwo long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forward
- Solenoid A has length L and N turns, solenoid B has length 2L and N turns, and solenoid C has length L/2 and 2N turns. If each solenoid carries the same current, rank the magnitudes of the magnetic fields in the centers of the solenoids from largest to smallest.arrow_forwardThe accompanying figure shows a cross-section of a long, hollow, cylindrical conductor of inner radius r1= 3.0 cm and outer radius r2= 5.0 cm. A 50-A current distributed uniformly over the cross-section flows into the page. Calculate the magnetic field at r = 2.0 cm. r = 4.0 cm. and r = 6.0 cm.arrow_forwardHow many turns must be wound on a flat, circular coil of radius 20 cm in order to produce a magnetic field of magnitude 4.0105 T at the center of the coil when the current through it is 0.85 A?arrow_forward
- A long, straight wire lies on a horizontal table and carries a current of 1.20 μA. In a vacuum, a proton moves parallel to the wire (opposite the current) with a constant speed of 2.30 × 104 m/s at a distance d above the wire. Ignoring the magnetic field due to the Earth, determine the value of d.arrow_forwardRank the magnitudes of the following magnetic fields from largest to smallest, noting any cases of equality. (a) the field 2 cm away from a long, straight wire carrying a current of 3 A (b) the Held at the center of a flat, compact, circular coil, 2 cm in radius, with 10 turns, carrying a current of 0.3 A (c) the field at the center of a solenoid 2 cm in radius and 200 cm long, with 1 000 turns, carrying a current of 0.3 A (d) the field at the center of a long, straight, metal bar, 2 cm in radius, carrying a current of 300 (e) a field of 1 mTarrow_forwardA proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forward
- A magnetic field directed into the page changes with time according to B = 0.030 0t2 + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see Fig. P23.28). When t = 3.00 s and r2 = 0.020 0 m, what are (a) the magnitude and (b) the direction of the electric field at point P2?arrow_forwardTwo long, parallel wires carry currents of 20.0 A and 10.0 A in opposite directions (Fig. OQ22.13). Which of the following statements is true? More than one statement may be correct. (a) In region I, the magnetic field is into the page and is never zero. (b) In region II, the field is into the page and can be zero. (c) In region III, it is possible for the field to be zero. (d) In region I, the magnetic field is out of the page and is never zero. (e) There are no points where the field is zero. Figure OQ22.13 Objective Questions 13 and 14.arrow_forwardIs the work required to accelerate a rod from rest to a speed v in a magnetic field greater than the final kinetic energy of the rod? Why?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning