Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 27, Problem 9OQ
To determine
The resistance of the electronic device when the potential difference is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A heart pacemaker fires exactly 73times a minute. Each time it fires, a 35.0 nF capacitor is charged by a battery in series with a resistor to 0.682 of its full voltage. What is the value of the resistance ? ?
A 13.5-microF capacitor is charged to 90.0 V, then discharged through a 95.0 ohm resistor.
After discharge begins, what amount of time t1 will pass before the capacitor has lost 90.0% of its initial charge?
t1=
After discharge begins, what amount of time t2 will pass before the capacitor has lost 90.0% of its initial energy?
t2=
What is the magnitude of the current i1 through the resistor when the capacitor has lost 90.0% of its initial charge?
i1=
What is the magnitude of the current i2 through the resistor when the capacitor has lost 90.0% of its initial energy?
i2=
A heart pacemaker fires exactly 71 times a minute. Each time it fires, a 19.0 nF capacitor is charged by a battery in series with a
resistor to 0.582 of its full voltage. What is the value of the resistance R?
R =
Chapter 27 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 27.1 - Consider positive and negative charges of equal...Ch. 27.2 - Prob. 27.2QQCh. 27.2 - Prob. 27.3QQCh. 27.4 - When does an incandescent lightbulb carry more...Ch. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1OQCh. 27 - Prob. 2OQCh. 27 - Prob. 3OQCh. 27 - Prob. 4OQCh. 27 - Prob. 5OQ
Ch. 27 - Prob. 6OQCh. 27 - Prob. 7OQCh. 27 - Prob. 8OQCh. 27 - Prob. 9OQCh. 27 - Prob. 10OQCh. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Prob. 13OQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQCh. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 1PCh. 27 - A small sphere that carries a charge q is whirled...Ch. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - The quantity of charge q (in coulombs) that has...Ch. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - A wire 50.0 m long and 2.00 mm in diameter is...Ch. 27 - A 0.900-V potential difference is maintained...Ch. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - While taking photographs in Death Valley on a day...Ch. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - At what temperature will aluminum have a...Ch. 27 - Assume that global lightning on the Earth...Ch. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - The potential difference across a resting neuron...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57APCh. 27 - Prob. 58APCh. 27 - Prob. 59APCh. 27 - Prob. 60APCh. 27 - Prob. 61APCh. 27 - Prob. 62APCh. 27 - Prob. 63APCh. 27 - Review. An office worker uses an immersion heater...Ch. 27 - Prob. 65APCh. 27 - Prob. 66APCh. 27 - Prob. 67APCh. 27 - Prob. 68APCh. 27 - Prob. 69APCh. 27 - Prob. 70APCh. 27 - Prob. 71APCh. 27 - Prob. 72APCh. 27 - Prob. 73APCh. 27 - Prob. 74APCh. 27 - Prob. 75APCh. 27 - Prob. 76APCh. 27 - Review. A parallel-plate capacitor consists of...Ch. 27 - The dielectric material between the plates of a...Ch. 27 - Prob. 79APCh. 27 - Prob. 80APCh. 27 - Prob. 81APCh. 27 - Prob. 82CPCh. 27 - Prob. 83CPCh. 27 - Material with uniform resistivity is formed into...Ch. 27 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The current-versus-voltage behavior of a certain electrical device is shown in Figure OQ27.9. When the potential difference across the device is 2 V, what is its resistance? (a) 1 (b) 34 (c) (d) undefined (e) none of those answersarrow_forwardAn oceanographer is studying how the ion concentration in seawater depends on depth. She makes a measurement by lowering into the water a pair of concentric metallic cylinders (Fig. P21.66) at the end of a cable and taking data to determine the resistance between these electrodes as a function of depth. The water between the two cylinders forms a cylindrical shell of inner radius ra, outer radius rb, and length L much larger than rb. The scientist applies a potential difference V between the inner and outer surfaces, producing an outward radial current I. Let represent the resistivity of the water. (a) Find the resistance of the water between the cylinders in terms of L, , ra, an rb. (b) Express the resistivity of the water in terms of the measured quantities L, ra, rb, V, and I. Figure P21.66arrow_forwardA Pairs of parallel wires or coaxial cables are two conductors separated by an insulator, so they have a capacitance. For a given cable, the capacitance is independent of the length if the cable is very long. A typical circuit model of a cable is shown in Figure P27.87. It is called a lumped-parameter model and represents how a unit length of the cable behaves. Find the equivalent capacitance of a. one unit length (Fig. P27.87A), b. two unit lengths (Fig. P27.87B), and c. an infinite number of unit lengths (Fig. P27.87C). Hint: For the infinite number of units, adding one more unit at the beginning does not change the equivalent capacitance.arrow_forward
- Figure P18.26 shows a voltage divider, a circuit used to obtain a desired voltage Vout from a source voltage . Determine the required value of R2 if = 5.00 V, Vout = 1.50 V and R1 = 1.00 103 (Hint: Use Kirchhoff's loop rule, substituting Vout = IR2, to find the current. Then solve Ohms law for R2. Figure P18.26arrow_forwardThe resistance between terminals a and b in Figure P27.36 is 75.0 . If the resistors labeled R have the same value, determine R. Figure P27.36arrow_forwardA potential difference of 1.00 V is maintained across a 10.0- resistor for a period of 20.0 s. What total charge passes by a point in one of the wires connected to the resistor in this time interval? (a) 200 C (b) 20.0 C (c) 2.00 C (d) 0.005 00 C (e) 0.050 0 Carrow_forward
- For the network in Figure P18.60, show that the resistance between points a and b is Rab=2717. (Hint: Connect a battery with emf across points a and b and determine /I, where I is the current in the battery.) Figure P18.60arrow_forwardA charge Q is placed on a capacitor of capacitance C. The capacitor is connected into the circuit shown in Figure P26.37, with an open switch, a resistor, and an initially uncharged capacitor of capacitance 3C. The switch is then closed, and the circuit comes to equilibrium. In terms of Q and C, find (a) the final potential difference between the plates of each capacitor, (b) the charge on each capacitor, and (c) the final energy stored in each capacitor. (d) Find the internal energy appearing in the resistor. Figure P26.37arrow_forwardA 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg • °C, assuming no heat escapes?arrow_forward
- The- pair of capacitors in Figure P28.63 are fully charged by a 12.0-V battery. The battery is disconnected, and the switch is then closed. Alter 1.00 ms has elapsed, (a) how much charge remains 011 the 3.00-F capacitor? (b) How much charge remains on the 2.00-F capacitor? (c) What is the current in the resistor at this time?arrow_forwardLightbulb A is marked 25.0 W 120. V, and lightbulb B is marked 100. W 120. V. These labels mean that each lightbulb has its respective power delivered to it when it is connected to a constant 120.-V source. (a) Find the resistance of each lightbulb. (b) During what time interval does 1.00 C pass into lightbulb A? (c) Is this charge different upon its exit versus its entry into the lightbulb? Explain. (d) In what time interval does 1.00 J pass into lightbulb A? (e) By what mechanisms does this energy enter and exit the lightbulb? Explain. (f) Find the cost of running lightbulb A continuously for 30.0 days, assuming the electric company sells its product at 0.110 per kWh.arrow_forwardConsider the circuit shown in Figure P26.24, where C1, = 6.00 F, C2 = 3.00 F. and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing Calculate (a) the initial charge acquired by C, and (b) the final charge on each capacitor.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY