Because a concave lens cannot form a real image of a real object, it is difficult to measure its focal length precisely. One method uses a second, convex, lens to produce a virtual object for the concave lens. Under the proper conditions the concave lens will form a real image of the virtual object! A student conducting a laboratory project on concave lenses makes the following observations. When a lamp is placed 42.0 cm to the left of a particular convex lens, a real (inverted) image is formed 37.5 cm to the right of the lens. The lamp and convex lens are kept in place while a concave lens is mounted 15.0 cm to the right of the convex lens. A real image of the lamp is now formed 35.0 cm to the right of the concave lens. What is the focal length of each lens?
Because a concave lens cannot form a real image of a real object, it is difficult to measure its focal length precisely. One method uses a second, convex, lens to produce a virtual object for the concave lens. Under the proper conditions the concave lens will form a real image of the virtual object! A student conducting a laboratory project on concave lenses makes the following observations. When a lamp is placed 42.0 cm to the left of a particular convex lens, a real (inverted) image is formed 37.5 cm to the right of the lens. The lamp and convex lens are kept in place while a concave lens is mounted 15.0 cm to the right of the convex lens. A real image of the lamp is now formed 35.0 cm to the right of the concave lens. What is the focal length of each lens?
Because a concave lens cannot form a real image of a real object, it is difficult to measure its focal length precisely. One method uses a second, convex, lens to produce a virtual object for the concave lens. Under the proper conditions the concave lens will form a real image of the virtual object! A student conducting a laboratory project on concave lenses makes the following observations. When a lamp is placed 42.0 cm to the left of a particular convex lens, a real (inverted) image is formed 37.5 cm to the right of the lens. The lamp and convex lens are kept in place while a concave lens is mounted 15.0 cm to the right of the convex lens. A real image of the lamp is now formed 35.0 cm to the right of the concave lens. What is the focal length of each lens?
Imagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.