EP PHYSICS -MOD.MASTERING (18W)
5th Edition
ISBN: 9780136782490
Author: Walker
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 1CQ
To determine
The reason for which our eyes feel restful to gaze off into the distance.
Expert Solution & Answer

Answer to Problem 1CQ
Our eyes feel restful to gaze off into the distance when objects are at least
6 m
away.
Explanation of Solution
The human eye feel relaxed when the viewing object is at least
The human eyes are designed to feel relaxed when the object is at the optical infinity.
Conclusion:
Therefore, our eyes feel restful to gaze off into the distance when objects are at least
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two long, parallel wires hang by 4.00-cm-long cords from a common axis (see the figure (Figure 1)). The wires have a mass per unit length of 1.85×10−2 kg/m and carry the same current in opposite directions. What is the current in each wire if the cords hang at an angle of 6.00 ∘ with the vertical? Please explain all steps.
The capacitor in (Figure 1) is initially uncharged. The switch is closed at t=0. What is the final charge on the capacitor? Please explain exactly what you do
The slender rods have a weight of 6 lb/ft. (Figure 1)
Figure
Part A
1.5 ft-
1.5 ft
2 ft
1 ft
1 of 1
Determine the moment of inertia of the assembly about an axis perpendicular to the page and
passing through the point A.
Express your answer to three significant figures and include the appropriate units.
IA =
Value
Submit
Request Answer
?
Units
Chapter 27 Solutions
EP PHYSICS -MOD.MASTERING (18W)
Ch. 27.1 - If the f -number on a camera is increased does the...Ch. 27.2 - Prob. 2EYUCh. 27.3 - A magnifying glass is held over a ruled piece of...Ch. 27.4 - Rank the following microscopes in order of...Ch. 27.5 - In a typical telescope, is foppose greater than,...Ch. 27.6 - One advantage of reflecting telescopes over...Ch. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - If your near-point distance is N, how close can...Ch. 27 - When you open your eyes underwater, everything...
Ch. 27 - When you use a simple magnifying glass, does it...Ch. 27 - Does chromatic aberration occur in mirrors?...Ch. 27 - BIO Predict/Explain Octopus Eyes To focus its...Ch. 27 - Your friend is 1.7 m tall. (a) When she stands 3.2...Ch. 27 - Which forms the larger image on the retina of your...Ch. 27 - Approximating the eye as a single thin lens 2.70...Ch. 27 - Approximating the eye as a single thin lens 2.70...Ch. 27 - Find the far-point distance of a person whose...Ch. 27 - Four camera lenses have the following focal...Ch. 27 - BIO The focal length of the human eye is...Ch. 27 - Predict/Calculate A camera with a...Ch. 27 - The actual light sensor size of a digital camera...Ch. 27 - (a) Find the f -number of a telescope with an...Ch. 27 - You are taking a photo of a poster on the wall of...Ch. 27 - You are taking pictures of the beach at sunset...Ch. 27 - Predict/Calculate You are taking a photograph of a...Ch. 27 - The Hale Telescope The 200-in. (5.08-m) diameter...Ch. 27 - Predict/Explain Two professors are stranded on a...Ch. 27 - A clerk at the local grocery store wears glasses...Ch. 27 - The umpire at a baseball game wears glasses that...Ch. 27 - A police detective discovers eyeglasses with a...Ch. 27 - BIO The cornea of a normal human eye has an...Ch. 27 - A myopic student is shaving without his glasses....Ch. 27 - An eyeglass prescription calls for a lens with an...Ch. 27 - An optometrist prescribes contact lenses with a...Ch. 27 - Two thin lenses, with f1 = +25.0 cm and f2 = 42.5...Ch. 27 - Two concave lenses, each with f = 15 cm, are...Ch. 27 - BIO Predict/Calculate The focal length of a...Ch. 27 - BIO Predict/Calculate Diopter Change in Diving...Ch. 27 - A converging lens of focal length 9,000 cm is 18.0...Ch. 27 - Repeat Problem 28, this time with the coin placed...Ch. 27 - Find the focal length of contact lenses that would...Ch. 27 - Find the focal length of contact lenses that would...Ch. 27 - What focal length should a pair of contact lenses...Ch. 27 - Reading glasses with a power of + 1.50 diopters...Ch. 27 - A nearsighted person wears contacts with a focal...Ch. 27 - Without his glasses, Isaac can see objects clearly...Ch. 27 - A person whose near-point distance is 42.5 cm...Ch. 27 - A pair of eyeglasses is designed to allow a person...Ch. 27 - Predict/Calculate Your favorite aunt can read a...Ch. 27 - Predict/Calculate The relaxed eyes of a patient...Ch. 27 - Without glasses, your Uncle Albert can see things...Ch. 27 - A 2.05-cm-tall object is placed 30.0 cm to the...Ch. 27 - A simple camera telephoto lens consists of two...Ch. 27 - Predict/Calculate With unaided vision, a librarian...Ch. 27 - A persons prescription for her new bifocal glasses...Ch. 27 - A persons prescription for his new bifocal...Ch. 27 - Two lenses, with f1 = +20.0 cm and f2 = +30.0 cm,...Ch. 27 - A converging lens with a focal length of 4.0 cm is...Ch. 27 - Two magnifying glasses are for sale at a store....Ch. 27 - The Moon is 3476 km in diameter and orbits the...Ch. 27 - A magnifying glass is a single convex lens with a...Ch. 27 - Calculate the focal length of a magnifying lens...Ch. 27 - Predict/Calculate A student has two lenses, one of...Ch. 27 - A beetle 4.93 mm long is examined with a simple...Ch. 27 - To engrave wishes of good luck on a watch, an...Ch. 27 - A jeweler examines a diamond with a magnifying...Ch. 27 - In Problem 55, find the angular magnification when...Ch. 27 - Prob. 57PCECh. 27 - You have two lenses: lens 1 with a focal length of...Ch. 27 - Predict/Calculate Microscope objective A is...Ch. 27 - A compound microscope has an objective lens with a...Ch. 27 - BIO A typical red blood cell subtends an angle of...Ch. 27 - (a) If you treat a 10x eyepiece of a microscope as...Ch. 27 - The medium-power objective lens in a laboratory...Ch. 27 - A compound microscope has the objective and...Ch. 27 - The barrel of a compound microscope is 15 cm in...Ch. 27 - A compound microscope uses a 75.0-mm lens as the...Ch. 27 - The tube length of a microscope is defined to be...Ch. 27 - Two telescopes of different lengths produce the...Ch. 27 - A grade school student plans to build a 35-power...Ch. 27 - A 75-power refracting telescope has an eyepiece...Ch. 27 - An amateur astronomer wants to build a small...Ch. 27 - A pirate sights a distant ship with a spyglass...Ch. 27 - A telescope has lenses with focal lengths f1 =...Ch. 27 - Jason has a 25-power telescope whose objective...Ch. 27 - Roughing It with Science A professor shipwrecked...Ch. 27 - Galileos Telescope Galileos first telescope used a...Ch. 27 - The Moon has an angular size of 0 50 when viewed...Ch. 27 - A telescope is 275 mm long and has an objective...Ch. 27 - The focal length for light that strikes near the...Ch. 27 - The focal length for red light that strikes a...Ch. 27 - BIO Predict/Explain Intracorneal Ring An...Ch. 27 - CE BIO The lens in a normal human eye, with...Ch. 27 - CE BIO Predict/Explain Treating Cataracts When the...Ch. 27 - Galileos original telescope (Figure 27-29) used a...Ch. 27 - Predict/Calculate For each of the following cases,...Ch. 27 - Predict/Calculate You have two lenses, with focal...Ch. 27 - BIO The eye is actually a multiple-lens system,...Ch. 27 - BIO Fitting Contact Lenses with a Keratometer When...Ch. 27 - Pricey Stamp A rare 1918 Jenny stamp, depicting a...Ch. 27 - Prob. 90GPCh. 27 - Consider a Galilean telescope, as illustrated in...Ch. 27 - A farsighted person uses glasses with a refractive...Ch. 27 - Landing on an Aircraft Carrier The Fresnel Lens...Ch. 27 - A Cassegrain astronomical telescope uses two...Ch. 27 - Predict/Calculate A convex Ions (f = 20.0 cm) is...Ch. 27 - The diameter of a collimated laser beam can be...Ch. 27 - Consider three lenses with focal lengths of 25.0...Ch. 27 - Because a concave lens cannot form a real image of...Ch. 27 - A person with a near-point distance N uses a...Ch. 27 - Prob. 100GPCh. 27 - Prob. 101PPCh. 27 - Prob. 102PPCh. 27 - Prob. 103PPCh. 27 - Predict/Calculate Referring to Example 27-4...Ch. 27 - Predict/Calculate Referring to Example 27-4 in...Ch. 27 - Predict/Calculate Referring to Example 27-4 In...Ch. 27 - Predict/Calculate Referring to Example 27-6...Ch. 27 - Predict/Calculate Referring to Example 27-6...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You have a summer internship at NASA and are working on plans for a new space station to be launched into orbit around the Earth. The design of the space station is shown. It is to be constructed in the shape of a hollow ring of mass 58,500 kg. The structures other than the ring shown in the figure have negligible mass compared to the ring. Members of the crew will walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 125 m. The thickness of the ring is very small compared to the radius, so we can model the ring as a hoop. At rest when constructed, the ring is to be set rotating about its axis so that the people standing inside on this deck experience an effective free-fall acceleration equal to g. The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. Your supervisor asks you to determine the following: (a) the time interval during which the rockets must be fired if each…arrow_forwardThe polar ice caps have a combined mass of about 2.65 × 1019 kg. If all of the ice in the polar ice caps melted, by how much time would the length of a day (Earth's rotational period) change? For simplicity, assume each ice cap is an identical thin solid disk with a radius of 7.20 x 105 m. Find the change both in seconds and as a percentage of duration of a day. change in time percent change (No Response) s (No Response) %arrow_forward. A space probe in outer space has a gyroscope within it used for rotation and stabilization. The moment of inertia of the gyroscope is I = 17.5 kg m² about the axis of the gyroscope, and the moment of inertia of the rest of the space probe is I = 5.00 × 105 kg • m² about the same axis. Initially both the space probe and gyroscope are not rotating. The gyroscope is then switched on and it nearly instantly starts rotating at an angular speed of 110 rad/s. How long (in s) should the gyroscope operate at this speed in order to change the space probe's orientation by 24.0°? (No Response) sarrow_forward
- Solve thisarrow_forwardWalking with a steady cadence is very important for covering long distances efficiently. How we place our feet, and how quickly we walk, also depends on the roughness of the surface we are walking upon and on the slope of the surface: we walk carefully on slippery surfaces, and take smaller steps when hiking up a hill. When we are walking at constant speed in a fixed direction, the horizontal and vertical components of the acceleration of our center of mass must be zero. In addition, the sum of torques about the body's center of mass must also be zero. Consider the situation shown in the figure below. ALMA XCM Х СМ XCM XCM XCM We can model the walking gait of a person as a swing of the front leg and torso about the point where the front foot is planted (shown with a red circle in the figure) and a rotation of the trailing leg about the center of mass (CM) of the person. If each leg of this 78.0 kg person is 85.0 cm long and has a mass of 13.8 kg, and 0; = 0₁ = 20.0°, what is the…arrow_forwardYou are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.550 kg and length l = 2.80 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Velcro M Incoming Velcro-covered ball m The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.20 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forward
- A hanging weight, with a mass of m₁ = 0.365 kg, is attached by a rope to a block with mass m₂ = 0.835 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R₁ = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As the weight falls, the block slides on the table, and the coefficient of kinetic friction between the block and the table is μ = 0.250. At the instant shown, the block is moving with a velocity of v; = 0.820 m/s toward the pulley. Assume that the pulley is free to spin without friction, that the rope does not stretch and does not slip on the pulley, and that the mass of the rope is negligible. R₂ R₁ Mo mi (a) Using energy methods, find the speed of the block (in m/s) after it has moved a distance of 0.700 m away from the initial position shown. (No Response) m/s (b) What is the angular speed of the pulley (in rad/s) after the block has…arrow_forwardA stiff, thin, metal rod with negligible mass is free to rotate in a vertical plane about pivot point P, as shown in the figure below. The rod has three small beads (labeled 1, 2, and 3 in the figure), all with the same mass m, attached to it as shown. The rod is held horizontally and then released from rest at time t = 0. Find all results below in terms of the mass m, distance d, and acceleration due to gravity g. 1 P m m 2 2d 23 m 3 (a) What is the moment of inertia of the system of three particles about the pivot point P? I= (No Response) (b) What is the net torque magnitude about point P at t = 0? Tnet = (No Response) (c) What is the angular acceleration of the system about point P at t = 0? magnitude direction α = (No Response) (No Response) (d) What is the linear acceleration of bead 3 at t = 0? magnitude a = (No Response) direction (No Response) (e) What is the maximum kinetic energy of the system? K = (No Response) max (f) What is the maximum angular speed about point P…arrow_forwardDuring a concentric loading of the quadriceps muscle in the upper leg, an athlete extends his lower leg from a vertical position (see figure (a)) to a fully extended horizontal position (see figure (b)) at a constant angular speed of 45.0° per second. Two of the four quadriceps muscles, the vastis intermedius and the rectus femoris, terminate at the patellar tendon which is attached to the top of the tibia in the lower leg. The distance from the point of attachment of the patellar tendon to the rotation axis of the tibia relative to the femur is 4.10 cm in this athlete. a b (a) The two quadriceps muscles can exert a maximum force of 225 N through the patellar tendon. This force is applied at an angle of 25.0° to the section of the tibia between the attachment point and the rotation axis. What is the torque (in N m) exerted by the muscle on the lower leg during this motion? (Enter the magnitude.) (No Response) N⚫ m (b) What is the power (in W) generated by the athlete during the motion?…arrow_forward
- A 3.1-kg sphere is suspended by a cord that passes over a 1.6-kg pulley of radius 3.3 cm. The cord is attached to a spring whose force constant is k = 86 N/m as in the figure below. Assume the pulley is a solid disk. www m (a) If the sphere is released from rest with the spring unstretched, what distance does the sphere fall through before stopping? (No Response) m (b) Find the speed of the sphere after it has fallen 25 cm. (No Response) m/sarrow_forwardThe angular momentum vector of a precessing gyroscope sweeps out a cone as shown in the figure below. The angular speed of the tip of the angular momentum vector, called its precessional frequency, is given by @p = t/L, where is the magnitude of the torque on the gyroscope and L is the magnitude of its angular momentum. In the motion called precession of the equinoxes, the Earth's axis of rotation precesses about the perpendicular to its orbital plane with a period of 2.58 × 104 yr. Model the Earth as a uniform sphere and calculate the torque on the Earth that is causing this precession. (No Response) N⚫ marrow_forwardA space station shaped like a giant wheel has a radius of 121 m and a moment of inertia of 5.12 × 108 kg. m². A crew of 150 lives on the rim, and the station is rotating so that the crew experiences an apparent acceleration of 1g. When 100 people move to the center of the station for a union meeting, the angular speed changes. What apparent acceleration is experienced by the managers remaining at the rim? Assume that the average mass of each inhabitant is 65.0 kg. (No Response) m/s²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College