College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 27, Problem 75GP
What is the total energy, in MeV, of
a. A proton traveling at 99.0% of the
b. An electron traveling at 99.0% of the speed of light?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the kinetic energy of the objects in the scenarios. A. A cosmic pion of mass 140 MeV/?2 flies through outer space at a speed of 9.47×103 km/s . See the hint for help converting MeV/?2 to kg. ?= J B. A cheetah weighing 4.10×102 N chases a gazelle at a speed of 33.7 m/s . ?= J C. A truck weighing 2.64 short tons speeds down the road at 75.6 mph . ?= J D. An asteroid of mass 2.71×1017 kg buzzes the Earth at a speed of 10300 mph . ?=
The half-life of a muon at rest is 1.5 μs. Muons that have been accelerated to a very high speed and are then held in a circular storage ring have a half-life of 7.5 μs.a. What is the speed of the muons in the storage ring?b. What is the total energy of a muon in the storage ring? The mass of a muon is 207 times the mass of an electron.
The nuclear reaction that powers the sun is the fusion of four protons into a helium nucleus. The process involves several steps, but the net reaction is simply 4p → 4He + energy. The mass of a helium nucleus is known to be 6.64 x 10-27 kg.a. How much energy is released in each fusion?b. What fraction of the initial rest mass energy is this energy?
Chapter 27 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 27 - Prob. 1CQCh. 27 - Frame S moves relative to frame S as shown in...Ch. 27 - a. Two balls move as shown in Figure Q27.3. What...Ch. 27 - A lighthouse beacon alerts ships to the danger of...Ch. 27 - As a racket passes the earth at 0.75c, it fires a...Ch. 27 - At the instant that a clock standing next to you...Ch. 27 - Prob. 8CQCh. 27 - Firecrackers 1 and 2 are 600 m apart. You are...Ch. 27 - Your clocks and calendars are synchronized with...Ch. 27 - Two trees are 600 m apart. You are standing...
Ch. 27 - Prob. 12CQCh. 27 - In Figure Q27.12, clocks C1 and C2, in frame S are...Ch. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 17CQCh. 27 - The rocket speeds shown in Figure Q27.18 are...Ch. 27 - Can a particle of mass m have total energy less...Ch. 27 - In your chemistry classes, you have probably...Ch. 27 - Lee and Leigh are twins. At their first birthday...Ch. 27 - A space cowboy wants to eject from his spacecraft...Ch. 27 - Prob. 23MCQCh. 27 - Prob. 24MCQCh. 27 - A particle moving at speed 0.40c has momentum p0....Ch. 27 - A particle moving at speed 0.40c has kinetic...Ch. 27 - A sprinter crosses the finish line of a race. The...Ch. 27 - A baseball pitcher can throw a ball with a speed...Ch. 27 - A boy on a skateboard coasts along at 5 m/s. He...Ch. 27 - A boat takes 3.0 hours to travel 30 km down a...Ch. 27 - When the moving sidewalk at the airport is broken,...Ch. 27 - Prob. 6PCh. 27 - An out-of-control alien spacecraft is diving into...Ch. 27 - Prob. 8PCh. 27 - A starship blasts past the earth at 2.0 103 m/s....Ch. 27 - You are flying at 0.99c with respect to Kara. At...Ch. 27 - Prob. 11PCh. 27 - Bianca is standing at x = 600 m. Firecracker 1, at...Ch. 27 - You are standing at x = 9.0 km Lightning bolt 1...Ch. 27 - A light flashes at position x = 0 m. One...Ch. 27 - Jose is baking to the east. Lightning bolt 1...Ch. 27 - Your 1000-m-long starship has warning lights at...Ch. 27 - There is a lightbulb exactly halfway between the...Ch. 27 - Prob. 18PCh. 27 - A cosmic ray travels 60 km through the earths...Ch. 27 - Prob. 20PCh. 27 - At what speed relative to a laboratory does a...Ch. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - An astronaut travels to a star system 4.5 ly away...Ch. 27 - A subatomic particle moves through the laboratory...Ch. 27 - At what speed as a fraction of c, will a moving...Ch. 27 - Jill claims that her new rocket is 100 m long. As...Ch. 27 - Prob. 28PCh. 27 - A muon travels 60 km through the atmosphere at a...Ch. 27 - Prob. 30PCh. 27 - The Stanford Linear Accelerator (SLAC) accelerates...Ch. 27 - Our Milky Way galaxy is 100,000 ly in diameter. A...Ch. 27 - The X-15 rocket-powered plane holds the record for...Ch. 27 - Youre standing on an asteroid when you see your...Ch. 27 - A rocket cruising past earth at 0.800c shoots a...Ch. 27 - Prob. 36PCh. 27 - A base on Planet X fires a missile toward an...Ch. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - What are the kinetic energy, the rest energy, and...Ch. 27 - Prob. 44PCh. 27 - A quarter-pound hamburger with all the fixings has...Ch. 27 - Prob. 46PCh. 27 - How fast much an electron move so that its total...Ch. 27 - Prob. 48PCh. 27 - At what speed is a particle's kinetic energy twice...Ch. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - The chemical energy of gasoline is 46 MJ/kg. If...Ch. 27 - A standard nuclear power plant generates 3.0 GW of...Ch. 27 - A firecracker explodes at x = 0 m, t = 0 s. A...Ch. 27 - Prob. 56GPCh. 27 - Prob. 57GPCh. 27 - A very fast-moving train car passes you, moving to...Ch. 27 - A spaceship heads directly toward an asteroid at a...Ch. 27 - Prob. 60GPCh. 27 - Prob. 61GPCh. 27 - Prob. 62GPCh. 27 - A spaceship flies past an experimenter who...Ch. 27 - Marissas spaceship approaches Josephs at a speed...Ch. 27 - At a speed of 0.90c, a spaceship travels to a star...Ch. 27 - Prob. 66GPCh. 27 - A rocket traveling at 0.500c sets out for the...Ch. 27 - A distant quasar is found to be moving away from...Ch. 27 - A space beacon on Planet Karma emits a pulse of...Ch. 27 - Two rockets, A and B, approach the earth from...Ch. 27 - Prob. 71GPCh. 27 - What is the speed of an electron after being...Ch. 27 - What is the speed of a proton after being...Ch. 27 - Prob. 74GPCh. 27 - What is the total energy, in MeV, of a. A proton...Ch. 27 - Prob. 76GPCh. 27 - The sun radiates energy at the rate 3.8 1026 W....Ch. 27 - The radioactive element radium (Ra) decays by a...Ch. 27 - Prob. 79GPCh. 27 - Prob. 80GPCh. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What name is given to the zone of greatest seismic activity?
Applications and Investigations in Earth Science (9th Edition)
Choose the best answer to each of the following. Explain your reasoning. Given the observational evidence, it i...
Cosmic Perspective Fundamentals
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Acetobacter is necessary for only one of the steps of vitamin C manufacture. The easiest way to accomplish this...
Microbiology: An Introduction
21. Two -diameter aluminum electrodes are spaced apart.
The electrodes are connected to a battery.
...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The muon is an unstable particle that spontaneously decays into an electron and two neutrinos. If the number of muons at t = 0 is N0, the number at time t is given by , where τ is the mean lifetime, equal to 2.2 μs. Suppose the muons move at a speed of 0.95c and there are 5.0 × 104 muons at t = 0. (a) What is the observed lifetime of the muons? (b) How many muons remain after traveling a distance of 3.0 km?arrow_forward(a) Calculate the speed of a particle of dust that has the same momentum as a proton moving at 0.999c. (b) What does the small speed tell us about the mass of a proton compared to even a tiny amount of macroscopic matter?arrow_forward(a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forward
- (a) Calculate the relativistic quantity =11v2/c2for 1.00-TeV protons produced at Fermilab. (b) If such a proton created a +having the same speed, how long would its life be in the laboratory? (c) How far could it travel in this time?arrow_forward(a) How fast would an athlete need to be running for a 100-m race to look 100 yd long? (b) Is the answer consistent with the fact that relativistic effects are difficult to observe in ordinary circumstances? Explain.arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward
- (a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardPlans for ail accelerator that produces a secondary beam of K mesons to scatter from nuclei, for the purpose of studying the strong force, call for them to have a kinetic energy of 500 MeV. (a) What would the relativistic quantity =11v2/c2be for these particles? (b) How long would their average lifetime be in the laboratory? (c) How far could they travel in this time?arrow_forward(a) Suppose the speed of light were only 3000 m/s. A jet fighter moving toward a target on the ground at 800 m/s shoots bullets, each having a muzzle velocity of 1000 m/s. What are the bullets' velocity relative to the target? (b) If the speed of light was this small, would you observe relativistic effects in everyday life? Discuss.arrow_forward
- (a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if =1.00105 for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forwardA muon formed high in Earth's atmosphere travels toward Earth at a speed v = 0.990c for a distance of 4.60 km as measured by an observer at rest with respect to Earth. It then decays into an electron, a neutrino, and an antineutrino. (a) How long does the muon survive according to an observer at rest on Earth? (b) Compute the gamma factor associated with the muon. (c) How much time passes according to an observer traveling with the muon? (d) What distance does the muon travel according to an observer traveling with the muon? (e) A third observer traveling toward the muon at c/2 measures the lifetime of the particle. According to this observer, is the muons lifetime shorter or longer than the lifetime measured by the observer at rest with respect to Earth? Explain.arrow_forwardA Van de Graaff accelerator utilizes a 50.0 MV potential difference to accelerate charged particles such as protons. (a) What is the velocity of a proton accelerated by such a potential? (b) An electron?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY