
College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 27, Problem 58GP
A railcar has a velocity of 0.5c relative to the ground. To another train traveling on the same track, the railcar’s velocity is –0.2c. What is the velocity of the train relative to the ground?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
RT = 4.7E-30
18V
IT = 2.3E-3A+
12
38Ω
ли
56Ω
ли
r5
27Ω
ли
r3
28Ω
r4
> 75Ω
r6
600
0.343V
75.8A
Now figure out how much current in going through the r4
resistor.
|4 =
unit
And then use that current to find the voltage drop across the r
resistor.
V4
=
unit
7
Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1
and x² + y²+z² = 4. Hint: use spherical polar coordinates.
ганм
Two long, straight wires are oriented perpendicular to the page,
as shown in the figure(Figure 1). The current in one wire is
I₁ = 3.0 A, pointing into the page, and the current in the other
wire is 12 4.0 A, pointing out of the page.
=
Find the magnitude and direction of the net magnetic field at point P.
Express your answer using two significant figures.
VO
ΜΕ ΑΣΦ
?
Figure
P
5.0 cm
5.0 cm
₁ = 3.0 A
12 = 4.0 A
B:
μΤ
You have already submitted this answer. Enter a new answer.
No credit lost. Try again.
Submit
Previous Answers Request Answer
1 of 1
Part B
X
Express your answer using two significant figures.
ΜΕ ΑΣΦ
0 = 0
?
below the dashed line to the right P
You have already submitted this answer. Enter a new answer.
No credit lost. Try again.
Chapter 27 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 27 - Prob. 1CQCh. 27 - Frame S moves relative to frame S as shown in...Ch. 27 - a. Two balls move as shown in Figure Q27.3. What...Ch. 27 - A lighthouse beacon alerts ships to the danger of...Ch. 27 - As a racket passes the earth at 0.75c, it fires a...Ch. 27 - At the instant that a clock standing next to you...Ch. 27 - Prob. 7CQCh. 27 - Firecrackers 1 and 2 are 600 m apart. You are...Ch. 27 - Your clocks and calendars are synchronized with...Ch. 27 - Two trees are 600 m apart. You are standing...
Ch. 27 - Figure Q27.11 shows Peggy standing at the center...Ch. 27 - In Figure Q27.12, clocks C1 and C2, in frame S are...Ch. 27 - A meter stick passes you at a speed of 0.5c....Ch. 27 - Youre passing a car on the highway. You want to...Ch. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - The rocket speeds shown in Figure Q27.18 are...Ch. 27 - Can a particle of mass m have total energy less...Ch. 27 - In your chemistry classes, you have probably...Ch. 27 - Lee and Leigh are twins. At their first birthday...Ch. 27 - A space cowboy wants to eject from his spacecraft...Ch. 27 - A lamp flashes at the origin. Then, 1 s later, a...Ch. 27 - Prob. 24MCQCh. 27 - A particle moving at speed 0.40c has momentum p0....Ch. 27 - A particle moving at speed 0.40c has kinetic...Ch. 27 - A sprinter crosses the finish line of a race. The...Ch. 27 - A baseball pitcher can throw a ball with a speed...Ch. 27 - A boy on a skateboard coasts along at 5 m/s. He...Ch. 27 - A boat takes 3.0 hours to travel 30 km down a...Ch. 27 - When the moving sidewalk at the airport is broken,...Ch. 27 - Prob. 6PCh. 27 - An out-of-control alien spacecraft is diving into...Ch. 27 - A starship blasts past the earth at 2.0 103 m/s....Ch. 27 - You are flying at 0.99c with respect to Kara. At...Ch. 27 - You are standing at the point x = 300 m, y = 400 m...Ch. 27 - Prob. 11PCh. 27 - Bianca is standing at x = 600 m. Firecracker 1, at...Ch. 27 - You are standing at x = 9.0 km Lightning bolt 1...Ch. 27 - A light flashes at position x = 0 m. One...Ch. 27 - Jose is baking to the east. Lightning bolt 1...Ch. 27 - Your 1000-m-long starship has warning lights at...Ch. 27 - There is a lightbulb exactly halfway between the...Ch. 27 - A cosmic ray travels 60 km through the earths...Ch. 27 - At what speed relative to a laboratory does a...Ch. 27 - An astronaut travels to a star system 4.5 ly away...Ch. 27 - Prob. 21PCh. 27 - At what speed as a fraction of c, will a moving...Ch. 27 - Jill claims that her new rocket is 100 m long. As...Ch. 27 - A muon travels 60 km through the atmosphere at a...Ch. 27 - The Stanford Linear Accelerator (SLAC) accelerates...Ch. 27 - Our Milky Way galaxy is 100,000 ly in diameter. A...Ch. 27 - The X-15 rocket-powered plane holds the record for...Ch. 27 - A rocket cruising past earth at 0.800c shoots a...Ch. 27 - A base on Planet X fires a missile toward an...Ch. 27 - A solar flare blowing out from the sun at 0.90c is...Ch. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - What are the kinetic energy, the rest energy, and...Ch. 27 - A quarter-pound hamburger with all the fixings has...Ch. 27 - How fast much an electron move so that its total...Ch. 27 - At what speed is a particle's kinetic energy twice...Ch. 27 - A firecracker explodes at x = 0 m, t = 0 s. A...Ch. 27 - Youre standing on an asteroid when you see your...Ch. 27 - A subatomic particle moves through the laboratory...Ch. 27 - Prob. 42GPCh. 27 - A very fast-moving train car passes you, moving to...Ch. 27 - Two events in reference frame S occur 10 s apart...Ch. 27 - A spaceship heads directly toward an asteroid at a...Ch. 27 - Hill Two spaceships approach each other at speeds...Ch. 27 - A cube has a density of 2000 kg/m3 while at rest...Ch. 27 - A railroad car that is 20 m long when at rest...Ch. 27 - A spaceship flies past an experimenter who...Ch. 27 - Marissas spaceship approaches Josephs at a speed...Ch. 27 - At a speed of 0.90c, a spaceship travels to a star...Ch. 27 - Prob. 54GPCh. 27 - A rocket traveling at 0.500c sets out for the...Ch. 27 - A distant quasar is found to be moving away from...Ch. 27 - Two rockets approach each other. Each is traveling...Ch. 27 - A railcar has a velocity of 0.5c relative to the...Ch. 27 - James, Daniella, and Tara all possess identical...Ch. 27 - A space beacon on Planet Karma emits a pulse of...Ch. 27 - Two rockets, A and B, approach the earth from...Ch. 27 - What is the speed of an electron after being...Ch. 27 - What is the speed of a proton after being...Ch. 27 - Prob. 66GPCh. 27 - What is the momentum of a particle with speed...Ch. 27 - Prob. 68GPCh. 27 - What is the total energy, in MeV, of a. A proton...Ch. 27 - Prob. 70GPCh. 27 - At what speed is the kinetic energy of a particle...Ch. 27 - Prob. 72GPCh. 27 - The chemical energy of gasoline is 46 MJ/kg. If...Ch. 27 - A standard nuclear power plant generates 3.0 GW of...Ch. 27 - The sun radiates energy at the rate 3.8 1026 W....Ch. 27 - The radioactive element radium (Ra) decays by a...Ch. 27 - Prob. 77GPCh. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Community 1 contains 100 individuals distributed among four species: 5A, 5B, 85C, and 5D Community 2 contains 1...
Campbell Biology in Focus (2nd Edition)
60. You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
9. If you kick a football, at what angle to the ground should you kick the ball for the maximum range—that is, ...
College Physics: A Strategic Approach (3rd Edition)
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forwardA small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forward
- TICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forwardThe 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forwardImagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.arrow_forward
- If a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexamplearrow_forwardA futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their accelerationarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forward
- Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forwardAt a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?arrow_forwardA hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY