Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 27, Problem 47P

(a)

To determine

The wavelengths of the light.

(a)

Expert Solution
Check Mark

Answer to Problem 47P

The wavelengths of light are 487.52nm , 658.41nm and 710.14nm at spectral angles of 10.1° , 13.7° and 14.8° respectively.

Explanation of Solution

Given info: Angles of spectral lines are 10.1° , 13.7° and 14.8° , Slits on the grating are 3600slits/cm .

The width of slit can be given as,

d=1N

Here,

N is the number of slits per length.

d is the width of the slit.

Substitute 3600slits/cm for N in the above equation,

d=13600slits/cm=(2.78×104cm)(1m100cm)=2.78×106m

The condition for first order diffraction grating can be given as,

λ=dsinθ (1)

Here,

θ is the angle of spectral line.

λ is the wavelength of light.

For the angle of 10.1° :

Substitute 2.78×106m for d , λ1 for λ and 10.1° for θ in the equation (1),

λ1=(2.78×106m)(sin10.1°)=487.52×109m=487.52nm

Thus, the wavelength of the light is 487.52nm at angle of 10.1° .

For the angle of 13.7° :

Substitute 2.78×106m for d , λ2 for λ and 13.7° for θ in the equation (1),

λ2=(2.78×106m)(sin13.7°)=658.41×109m=658.41nm

Thus, the wavelength of the light is 658.41nm at angle of 13.7° .

For the angle of 14.8° :

Substitute 2.78×106m for d , λ3 for λ and 14.8° for θ in the equation (1),

λ3=(2.78×106m)(sin14.8°)=710.14×109m=710.14nm

Thus, the wavelength of the light is 710.14nm at angle of 14.8° .

Conclusion:

Therefore, the wavelengths of light are 487.52nm , 658.41nm and 710.14nm at spectral angles of 10.1° , 13.7° and 14.8° respectively.

(b)

To determine

The angles for the lines in the second order spectrum.

(b)

Expert Solution
Check Mark

Answer to Problem 47P

The angles for the second order lines are 20.53° , 28.27° and 30.72° for the wavelengths of 487.52nm , 658.41nm and 710.14nm respectively.

Explanation of Solution

Given info: Angles of spectral lines are 10.1° , 13.7° and 14.8° , Slits on the grating are 3600slits/cm .

The condition for first order diffraction grating can be given as,

dsinθ=2λ (1)

θ is the angle of spectral line.

λ is the wavelength of light.

Rearrange the above equation for θ ,

θ=sin1(2λd) (2)

For the wavelength 487.52nm :

Substitute 2.78×106m for d , 487.52×109m for λ and θ1 for θ in the equation (2),

Principles of Physics: A Calculus-Based Text, Chapter 27, Problem 47P , additional homework tip  1 θ1=sin1(2(487.52×109m)(2.78×106m))=20.53°

Thus, the angle of the spectral line is 20.53° for wavelength of 487.52nm .

For the wavelength 658.41nm :

Substitute 2.78×106m for d , 658.41×109m for λ and θ2 for θ in the equation (2),

Principles of Physics: A Calculus-Based Text, Chapter 27, Problem 47P , additional homework tip  2 θ2=sin1(2(658.41×109m)(2.78×106m))=28.27°

Thus, the angle of the spectral line is 28.27° for wavelength of 658.41nm .

For the wavelength 710.14nm :

Substitute 2.78×106m for d , 710.14×109m for λ and θ3 for θ in the equation (2),

Principles of Physics: A Calculus-Based Text, Chapter 27, Problem 47P , additional homework tip  3 θ3=sin1(2(710.14×109m)(2.78×106m))=30.72°

Thus, the angle of the spectral line is 30.72° for wavelength of 710.14nm .

Conclusion:

Therefore, the angles of lines are 20.53° , 28.27° and 30.72° for the wavelengths of 487.52nm , 658.41nm and 710.14nm respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 27 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 27 - Prob. 5OQCh. 27 - Prob. 6OQCh. 27 - A monochromatic beam of light of wavelength 500 nm...Ch. 27 - A film of oil on a puddle in a parking lot shows a...Ch. 27 - Prob. 9OQCh. 27 - A Fraunhofer diffraction pattern is produced on a...Ch. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Why is it advantageous to use a large-diameter...Ch. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Why is the lens on a good-quality camera coated...Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - A laser beam is incident at a shallow angle on a...Ch. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - John William Strutt, Lord Rayleigh (1842–1919),...Ch. 27 - Prob. 1PCh. 27 - Youngs double-slit experiment underlies the...Ch. 27 - Two radio antennas separated by d = 300 m as shown...Ch. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - In Figure P27.7 (not to scale), let L = 1.20 m and...Ch. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Two slits are separated by 0.180 mm. An...Ch. 27 - Prob. 12PCh. 27 - A pair of narrow, parallel slits separated by...Ch. 27 - Coherent light rays of wavelength strike a pair...Ch. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - A riverside warehouse has several small doors...Ch. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Astronomers observe the chromosphere of the Sun...Ch. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - A beam of 580-nm light passes through two closely...Ch. 27 - Prob. 24PCh. 27 - An air wedge is formed between two glass plates...Ch. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - A beam of monochromatic green light is diffracted...Ch. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - White light is spread out into its spectral...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - A wide beam of laser light with a wavelength of...Ch. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - Prob. 61PCh. 27 - Prob. 62PCh. 27 - Both sides of a uniform film that has index of...Ch. 27 - Prob. 64PCh. 27 - Light of wavelength 500 nm is incident normally on...Ch. 27 - Prob. 66PCh. 27 - A beam of bright red light of wavelength 654 nm...Ch. 27 - Iridescent peacock feathers are shown in Figure...Ch. 27 - Prob. 69PCh. 27 - Prob. 70PCh. 27 - Figure CQ27.4 shows an unbroken soap film in a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY