Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 27, Problem 45P

(a)

To determine

The number of directions on the other side of the array for maximum intensity.

(a)

Expert Solution
Check Mark

Answer to Problem 45P

The number of directions on the other side of the array for maximum intensity is three.

Explanation of Solution

Given info: Temperature of air is 20.0°C , spacing between centre is 1.30cm and frequency of array is 37.2kHz .

The wavelength for a diffraction grating can be given as,

λ=vf

Here,

λ is the wavelength of light.

v is the speed of sound.

f is the frequency of the array.

Substitute 343m/s for v and 37.2kHz for f in the above equation to find λ ,

λ=(343m/s)(37.2kHz)(103Hz1kHz)=9.22×103m

The condition for the bright fringe in diffraction can be given as,

mλ=dsinθ (1)

Here,

θ is the angle of spectral line.

λ is the wavelength of light.

m is the order of diffraction.

d is the spacing between centre.

Substitute 90° for θ , 9.22×103m for λ and 1.30cm for d in the equation (1),

m(9.22×103m)=[(1.30cm)(1m100cm)]sin90°m=1.411

The maximum number of direction possible can be given as,

mmax=2m+1

Here,

mmax is the maximum number of directions.

Substitute 1 for m in the above equation,

mmax=2(1)+1=3

Thus, the number of directions on the other side of the array for maximum intensity is three.

Conclusion:

Therefore, the number of directions on the other side of the array for maximum intensity is three.

(b)

To determine

The angle for each of the directions relative to the direction of the incident beam.

(b)

Expert Solution
Check Mark

Answer to Problem 45P

The angle for each of the directions relative to the direction of the incident beam is 0° , +45.2° and 45.2° .

Explanation of Solution

Given info: Temperature of air is 20.0°C , spacing between centre is 1.30cm and frequency of array is 37.2kHz .

The condition for a diffraction grating as in equation (1) can be given as,

mλ=dsinθ

Rearrange the above expression for θ ,

θ=sin1(mλd) (2)

Substitute (2) for m , 9.22×103m for λ and 1.30cm for d in the equation (2),

θ=sin1((2)(9.22×103m)(1.30cm)(1m100cm))=sin1(1.418)

As the range of sine function is [1,1] , the value of sin1(1.418) is undetermined. Therefore, |m| cannot be more than unity.

Substitute (1) for m , 9.22×103m for λ and 1.30cm for d in the equation (2),

θ=sin1((1)(9.22×103m)(1.30cm)(1m100cm))=sin1(0.709)=45.2°

Thus, θ is (45.2°) for the (1) order of diffraction.

Substitute 0 for m , 9.22×103m for λ and 1.30cm for d in the equation (2),

θ=sin1((0)(9.22×103m)(1.30cm)(1m100cm))=sin1(0)=0°

Thus, θ is 0° for the 0 order of diffraction.

Substitute (1) for m , 9.22×103m for λ and 1.30cm for d in the equation (2),

θ=sin1((1)(9.22×103m)(1.30cm)(1m100cm))=sin1(0.709)=45.2°

Thus, θ is 45.2° for the (1) order of diffraction.

Conclusion:

Therefore, the angle for each of the directions relative to the direction of the incident beam is 0° , +45.2° and 45.2° .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
high-frequency sound waves exhibit less diffraction than low-frequency sound waves do. However, even high frequency sound waves exhibit much more diffraction under normal circumstances than do light waves that pass through the same opening. The highest frequency that a healthy ear can typically hear is 2.0 × 104 Hz. Assume that a sound wave with this frequency travels at 344 m/s and passes through a doorway that has a width of 0.95 m. (a) Determine the angle that locates the first minimum to either side of the central maximum in the diffraction pattern for the sound. (b) Suppose that yellow light (wavelength = 567 nm, in vacuum) passes through a doorway and that the first dark fringe in its diffraction pattern is located at the angle determined in part (a). How wide would this hypothetical doorway have to be?
A circular diaphragm 62.72 cm in diameter oscillates at a frequency of 15.97 kHz as an underwater source of sound used for submarine detection. Far from the source, the sound intensity is distributed as the diffraction pattern of a circular hole whose diameter equals that of the diaphragm. Take the speed of sound in water to be 1450. m/s, and find the angle (in degrees) between the normal to the diaphragm and a line from the diaphragm to the first minimum.
Two observers stand 20 m apart on a line that connects them and a spherical light source. If the observer nearer the source measures a light intensity 59 %% greater than the other observer, how far is the nearer observer from the source?

Chapter 27 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 27 - Prob. 5OQCh. 27 - Prob. 6OQCh. 27 - A monochromatic beam of light of wavelength 500 nm...Ch. 27 - A film of oil on a puddle in a parking lot shows a...Ch. 27 - Prob. 9OQCh. 27 - A Fraunhofer diffraction pattern is produced on a...Ch. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Why is it advantageous to use a large-diameter...Ch. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Why is the lens on a good-quality camera coated...Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - A laser beam is incident at a shallow angle on a...Ch. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - John William Strutt, Lord Rayleigh (1842–1919),...Ch. 27 - Prob. 1PCh. 27 - Youngs double-slit experiment underlies the...Ch. 27 - Two radio antennas separated by d = 300 m as shown...Ch. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - In Figure P27.7 (not to scale), let L = 1.20 m and...Ch. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Two slits are separated by 0.180 mm. An...Ch. 27 - Prob. 12PCh. 27 - A pair of narrow, parallel slits separated by...Ch. 27 - Coherent light rays of wavelength strike a pair...Ch. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - A riverside warehouse has several small doors...Ch. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Astronomers observe the chromosphere of the Sun...Ch. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - A beam of 580-nm light passes through two closely...Ch. 27 - Prob. 24PCh. 27 - An air wedge is formed between two glass plates...Ch. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - A beam of monochromatic green light is diffracted...Ch. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - White light is spread out into its spectral...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - A wide beam of laser light with a wavelength of...Ch. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - Prob. 61PCh. 27 - Prob. 62PCh. 27 - Both sides of a uniform film that has index of...Ch. 27 - Prob. 64PCh. 27 - Light of wavelength 500 nm is incident normally on...Ch. 27 - Prob. 66PCh. 27 - A beam of bright red light of wavelength 654 nm...Ch. 27 - Iridescent peacock feathers are shown in Figure...Ch. 27 - Prob. 69PCh. 27 - Prob. 70PCh. 27 - Figure CQ27.4 shows an unbroken soap film in a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY