Concept explainers
(a)
The wavelength and the color of the light in the visible spectrum most strongly reflected.
(a)
Answer to Problem 22P
The value of
Explanation of Solution
Given Information: The refractive index of the oil film is
It is given that an oil film floating on water is illuminated by white light at normal incidence as shown in figure given below.
Figure (1)
For most strongly reflected waves:
Write the expression for the constructive interference in thin film.
Here,
From equation (1), formula to calculate the value of wavelength of the light is,
From equation (2), formula to calculate the value of wavelength of the light for
Here,
Substitute
The range for the wavelength of the visible light is
Thus, the value of wavelength of the light for
From equation (2), formula to calculate the value of wavelength of the light for
Here,
Substitute
Thus, the value of wavelength of the light for
From equation (2), formula to calculate the value of wavelength of the light for
Here,
Substitute
Thus, the value of wavelength of the light for
Conclusion:
Therefore, the value of wavelength of the light for
(b)
The wavelength and the color of the light in the spectrum most strongly transmitted.
(b)
Answer to Problem 22P
The value of wavelength of the light for
Explanation of Solution
Given Information: The refractive index of the oil film is
For most strongly transmitted waves:
Write the expression for the destructive interference in thin film.
From equation (5), formula to calculate the value of wavelength of the light is,
From equation (6), formula to calculate the value of wavelength of the light for
Here,
Substitute
Thus, the value of wavelength of the light for
From equation (6), formula to calculate the value of wavelength of the light for
Here,
Substitute
Thus, the value of wavelength of the light for
From equation (6), formula to calculate the value of wavelength of the light for
Here,
Substitute
Thus, the value of wavelength of the light for
Conclusion:
Therefore, the value of wavelength of the light for
Want to see more full solutions like this?
Chapter 27 Solutions
Principles of Physics: A Calculus-Based Text
- is 0.3026 a finite numberarrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that system of all three beads is zero. 91 E field lines 93 92 What charge does each bead carry? 91 92 -1.45 = = What is the net charge of the system? What charges have to be equal? μC 2.9 × What is the net charge of the system? What charges have to be equal? μC 93 = 2.9 μС 92 is between and 91 93° The sum of the charge on q₁ and 92 is 91 + 92 = −2.9 μC, and the net charge of thearrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forward
- No chatgpt pls will upvotearrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.49 xm to the right of the 2.50 μC chargearrow_forwardFind the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction 2500 x What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C 226 × How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis 9a 9b % 9 9darrow_forward
- would 0.215 be the answer for part b?arrow_forwardSuppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forwardWhat functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forward
- If speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forwardWhat does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forwardWhat is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning