EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 30QLP
Why may different advanced machining processes affect the fatigue strength of materials to different degrees?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Define specific energy for plane strain machining (cutting).
In plane-strain machỉning, the two main sources of energy dissipation are deformation along
the shear plane (~70%) and friction at the tool-chip contact along the rake face (~30%).
Consider machining of a rigid perfectly-plastic work material whose uniaxial yield stress is
700 MPa, and is independent of strain rate and temperature. A tool of zero-degree rake angle
is employed. Measurements showed the (deformed) chip thickness to be twice that of the
undeformed chip thickness. Based on the aforementioned distribution of energy, estimate the
specific energy for this process.
Q3 (a) Describe the process of chip formation in machining ductile and brittle
materials.
(b) Discuss the formation of built up edge (BUE) in ductile material and state the
reason(s) why BUE will not take place in machining brittle materials.
I need answer within 20 minutes please please with my best wishes
Chapter 27 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 27 - Describe the similarities and differences between...Ch. 27 - Name the processes involved in chemical machining....Ch. 27 - Explain the difference between chemical machining...Ch. 27 - What is the underlying principle of...Ch. 27 - Explain how the EDM process is capable of...Ch. 27 - What are the important features of the Blue Arc...Ch. 27 - What are the capabilities of wire EDM? Could this...Ch. 27 - Explain why laser Microjet has a large depth of...Ch. 27 - Describe the advantages of water-jet machining.Ch. 27 - What is the difference between photochemical...
Ch. 27 - What type of workpiece is not suitable for...Ch. 27 - What is an undercut? Why must it be considered in...Ch. 27 - Explain the principle of hybrid machining.Ch. 27 - Give technical and economic reasons that the...Ch. 27 - Why is the preshaping or premachining of parts...Ch. 27 - Explain why the mechanical properties of workpiece...Ch. 27 - Prob. 17QLPCh. 27 - Prob. 18QLPCh. 27 - Why has electrical-discharge machining become so...Ch. 27 - Prob. 20QLPCh. 27 - Which of the advanced machining processes would...Ch. 27 - Which of the processes described in require a...Ch. 27 - Describe your thoughts regarding the laser-beam...Ch. 27 - Are deburring operations still necessary for some...Ch. 27 - List and explain factors that contribute to a poor...Ch. 27 - What is the purpose of the abrasives in...Ch. 27 - Which of the processes described in this chapter...Ch. 27 - Is kerf width important in wire EDM? Explain.Ch. 27 - Comment on your observations regarding Fig. 27.4.Ch. 27 - Why may different advanced machining processes...Ch. 27 - A 200-mm-deep hole that is 30 mm in diameter is...Ch. 27 - If the operation in Problem 27.31 were performed...Ch. 27 - A cutting-off operation is being performed with a...Ch. 27 - A 0.80-in.-thick copper plate is being machined by...Ch. 27 - Explain why it is difficult to produce sharp...Ch. 27 - Make a list of the processes described in this...Ch. 27 - Would the processes described in this chapter be...Ch. 27 - Prob. 38SDPCh. 27 - Describe your thoughts as to whether the...Ch. 27 - Make a list of machining processes that may be...Ch. 27 - At what stage is the abrasive in abrasive...Ch. 27 - Describe the similarities and differences among...Ch. 27 - Describe the similarities and differences among...Ch. 27 - Describe any workpiece size limitations in...Ch. 27 - Suggest several design applications for the types...Ch. 27 - Based on the topics covered in Parts III and IV,...Ch. 27 - Review Example 27.1 and explain the relevant...Ch. 27 - Precision engineering is a term that is used to...Ch. 27 - With appropriate sketches, describe the principles...Ch. 27 - Make a table of the process capabilities of the...Ch. 27 - One of the general concerns regarding advanced...Ch. 27 - It can be seen that several of the processes...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Subject: manufacturing processarrow_forwardWhich of the following is one of the disadvantages of machining methods? 1-Variety of machinable part material 2-Variety of piece shapes and special geometric fomms 3-High dimensional accuracy and surface quality (Aşağıdakilerden hangisi talaşlı imalat yöntemlerinin dezavantajlarındand ir? 1-İşlenebilen parça malzemesinin çeşitliliği 2-Parça şekillerinin ve özel geometrik formların çeşitliliği 3-Yüksek boyutsal doğruluk ve yüzey kalitesi ) 16 - O A) Only 3 (Yalnız 3) B) Only 1 (Yalnız 1) ) None (Hiçbiri) O D All (Heps i) O E Only 2((Yalnz 2)arrow_forwardFor the following application, identify one or more nontraditional machining processes that might be used, and present arguments to support your selection. Assume that either the part geometry or the work material (or both) preclude the use of conventional machining. The application is a matrix of 0.1 mm (0.004 in) diameter holes in a plate of 3.2 mm (0.125 in) thick hardened tool steel. The matrix is rectangular, 75 by 125 mm (3.0 by 5.0 in) with the separation between holes in each direction = 1.6 mm ( 0.0625 in).arrow_forward
- A process engineer is trying to improve the life of a cutting tool. He has run a 23 experiment using (1) cutting speed, (2) metal hardness, (3) and cutting angle as the factors. The data from the 2 replicates are shown below. (a) Do any of the 3 factors affect tool life? (b)what combination of the factor levels produces the longest tool life? (c) Is there a combination of cutting speed and cutting angle that always gives good results regardless of metal hardness? Replicate Run I II (1) 221 311 a 325 435 b 354 348 ab 552 472 c 440 453 ac 406 377 bc 605 500 abc 392 419arrow_forwardmanufacturing technology please answer as soon as possiblearrow_forwardI need the answer as soon as possiblearrow_forward
- Question 2. The two sources of heat are (a) shearing in the primary shear plane and (b) friction at the tool-chip interface. What type of the tool wear or tool failure could be caused as a result of developing these heat sources on machining process? Explain your answer in accordance with following representation of tool wear. Insert cutting edgearrow_forwardNeat workarrow_forward(a) Figure 1 shows surface roughness and tolerances obtained in Chemical Machining (CM) and Electrochemical Machining (ECM) process for different types of electronic products. Comment on the differences between chemical and electrochemical machining process in terms of surface roughness and tolerance of the machined product as illustrated in Figure 1. 0.9 CM 0.8 0.7 Z ECM 0.6 0.5 0.4 0.3 0.2 0.1 Product A Product B Product C Product D Products 25 E ČM 20 Z ECM 15 10 Product A Product B Product C Product D Products Figure 1: Surface roughness and tolerances of various electronic products Surface roughness, Ra Tolerance, (t mm x 10)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License