College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 28P
To determine
The minimum number of photons that must enter the pupil of the eye per second for an object to be seen, if the intensity of the light reaching the eye must be greater than or equal to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I Review | Constants Periodic Table
he human eye can barely detect a star whose intensity at the earth's
urface is 1.6 x 10-11 W/m?
Part A
If the dark adapted eye has a pupil diameter of 6.0 mm , how many photons per second enter the eye from the star? Assume the starlight has a wavelength of 550 nm
?
X•10"
N =
Submit
Previous Answers Request Answer
5a
28. * BIO Human vision sensitivity To see an object with the unaided eye, the light intensity
coming to the eye must be about 5 × 10-12 V/m² s or greater. Determine the minimum
•
number of photons that must enter the eye's pupil each second in order for an object to be
seen. Assume that the pupil's radius is 0.20 cm and the wavelength of the light is 550 nm.
Chapter 27 Solutions
College Physics
Ch. 27 - Prob. 1RQCh. 27 - Prob. 2RQCh. 27 - Prob. 3RQCh. 27 - Prob. 4RQCh. 27 - Prob. 5RQCh. 27 - Prob. 6RQCh. 27 - Prob. 1MCQCh. 27 - Prob. 2MCQCh. 27 - Prob. 3MCQCh. 27 - Prob. 4MCQ
Ch. 27 - Prob. 5MCQCh. 27 - Prob. 6MCQCh. 27 - Prob. 7MCQCh. 27 - Prob. 8MCQCh. 27 - Prob. 9MCQCh. 27 - Multiple Choice Questions In which of the...Ch. 27 - Prob. 11MCQCh. 27 - Prob. 12MCQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 17CQCh. 27 - Prob. 18CQCh. 27 - Prob. 19CQCh. 27 - Prob. 20CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - 27.1 Black Body Radiation * EST Estimate the...Ch. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - 42. * EST Estimate the temperature of the Sun's...Ch. 27 - Prob. 44GPCh. 27 - Prob. 46GPCh. 27 - Prob. 47GPCh. 27 - Prob. 48GPCh. 27 - Prob. 49GPCh. 27 - Prob. 50GPCh. 27 - Prob. 51GPCh. 27 - Prob. 52GPCh. 27 - Prob. 53GPCh. 27 - Prob. 54GPCh. 27 - Prob. 55RPPCh. 27 - Prob. 56RPPCh. 27 - Prob. 57RPPCh. 27 - Prob. 58RPPCh. 27 - Prob. 59RPPCh. 27 - Prob. 60RPPCh. 27 - Prob. 61RPPCh. 27 - Prob. 62RPPCh. 27 - Prob. 63RPPCh. 27 - Prob. 64RPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Find the energy in joules and eV of photons in radio waves from an FM station that has a 90.0-MHz broadcast frequency. (b) What does this imply about the number of photons per second that the radio station must broadcast?arrow_forward(a) What is the shortest-wavelength x-ray radiation that can be generated in an x-ray tube with an applied voltage of 50.0 kV? (b) Calculate the photon energy in eV. (c) Explain the relationship of the photon energy to the applied voltage.arrow_forwardThe velocity of a proton emerging from a Van de Graaff accelerator is 25.0% of the speed of light. (a) What is the proton's wavelength? (b) What is its kinetic energy, assuming it is nonrelativistic? (c) What was the equivalent voltage through which it was accelerated?arrow_forward
- (a) Calculate the wavelength of a photon that has the same momentum as a proton moving at 1.00% of the speed of light. (b) What is the energy of the photon in MeV? (c) What is the kinetic energy of the proton in MeV?arrow_forward(a) What is the wavelength of a photon that has a momentum of 5.001029kgm/s ? (b) Find its energy in eV.arrow_forward(a) What energy photons can pump chromium atoms in a ruby laser from the ground state to its second and third excited states? (b) What are the wavelengths of these photons? Verify that they are in the visible part of the spectrum.arrow_forward
- (a) Find the momentum of a 4.00-cm-wavelength microwave photon. (b) Discuss why you expect the answer to (a) to be very small.arrow_forwardAn x ray tube has an applied voltage of 100 kV. (a) What is the most energetic x-ray photon it can produce? Express your answer in electron volts and joules. (b) Find the wavelength of such an X—ray.arrow_forwardSome of the most powerful lasers are based on the energy levels of neodymium in solids, such as glass, as shown in Figure 30.65. (a) What average wavelength light can pump the neodymium into the levels above its metastable state? (b) Verify that the 1.17 eV transition produces 1.06 m radiation. Figure 30.65 Neodymium atoms in glass have these energy levels, one of which is metastable. The group of levels above the metastable state is convenient for achieving a population inversion, since photons of many different energies can be absorbed by atoms in the ground state.arrow_forward
- (a) What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (b) What is its energy in MeV?arrow_forward(a) Calculate the velocity of an electron that has a wavelength of 1.00 m. (b) Through what voltage must the electron be accelerated to have this velocity?arrow_forwardIntegrated Concepts In a Millikan oil-drop experiment using a setup like that in Figure 30.9, a 500-V potential difference is applied to plates separated by 2.50 cm. (a) What is the mass of an oil drop having two extra electrons that is suspended motionless by the field between the plates? (b) What is the diameter of the drop, assuming it is a sphere with the density of olive oil?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning