College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 17P
To determine
The frequency and wavelength of the photons and the region of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
650x10⁹ J
multiple choice question
What will be the energy associated with a red photon, if the wavelength of the red light is 650 nm? [Hint: Find the frequency of red light first to calculate the energy.]
A
B.
6.5×108 J
C.
4.6x1014 J
D.
3.0x10-19 J
Jump to 1 2 3 4
E.
3.0x101⁹ J
5 6 7 8 9 10
Two FM radio stations emit radio waves at frequencies of 90.5 MHz and 107.9 MHz. Each station emits the same total power. If you think of the radio waves as photons, which station emits the larger number of photons per second?A. The 90.5 MHz station. B. The 107.9 MHz station.C. Both stations emit the same number of photons per second.
Calculate the energy of a photon of blue light, 1 = 400nm in air.
A. 0.1eV
%3D
B. 21.leV
С. 3.1eV
D. 300.0eV
O A.
В.
C.
O D.
Chapter 27 Solutions
College Physics
Ch. 27 - Prob. 1RQCh. 27 - Prob. 2RQCh. 27 - Prob. 3RQCh. 27 - Prob. 4RQCh. 27 - Prob. 5RQCh. 27 - Prob. 6RQCh. 27 - Prob. 1MCQCh. 27 - Prob. 2MCQCh. 27 - Prob. 3MCQCh. 27 - Prob. 4MCQ
Ch. 27 - Prob. 5MCQCh. 27 - Prob. 6MCQCh. 27 - Prob. 7MCQCh. 27 - Prob. 8MCQCh. 27 - Prob. 9MCQCh. 27 - Multiple Choice Questions In which of the...Ch. 27 - Prob. 11MCQCh. 27 - Prob. 12MCQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 17CQCh. 27 - Prob. 18CQCh. 27 - Prob. 19CQCh. 27 - Prob. 20CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - 27.1 Black Body Radiation * EST Estimate the...Ch. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - 42. * EST Estimate the temperature of the Sun's...Ch. 27 - Prob. 44GPCh. 27 - Prob. 46GPCh. 27 - Prob. 47GPCh. 27 - Prob. 48GPCh. 27 - Prob. 49GPCh. 27 - Prob. 50GPCh. 27 - Prob. 51GPCh. 27 - Prob. 52GPCh. 27 - Prob. 53GPCh. 27 - Prob. 54GPCh. 27 - Prob. 55RPPCh. 27 - Prob. 56RPPCh. 27 - Prob. 57RPPCh. 27 - Prob. 58RPPCh. 27 - Prob. 59RPPCh. 27 - Prob. 60RPPCh. 27 - Prob. 61RPPCh. 27 - Prob. 62RPPCh. 27 - Prob. 63RPPCh. 27 - Prob. 64RPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What energy photons can pump chromium atoms in a ruby laser from the ground state to its second and third excited states? (b) What are the wavelengths of these photons? Verify that they are in the visible part of the spectrum.arrow_forward(a) Find the energy in joules and eV of photons in radio waves from an FM station that has a 90.0-MHz broadcast frequency. (b) What does this imply about the number of photons per second that the radio station must broadcast?arrow_forward(a) What is the minimum value of 1 for a subshell that has 11 electrons in it? (b) If this subshell is in the n=5 shell, what is the spectroscopic notation for this atom?arrow_forward
- (a) Which line in the Balmer series is the first one in the UV part of the spectrum? (b) How many Balmer series lines are in the visible part of the spectrum? (c) How many are in the HV?arrow_forward(a) What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (b) What is its energy in MeV?arrow_forward(a) What is the wavelength of a photon that has a momentum of 5.001029kgm/s ? (b) Find its energy in eV.arrow_forward
- (a) How far away must you be from a 650-kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume no reflections or absorption, as if you were in deep outer space. (b) Discuss the implications for detecting intelligent life in other solar systems by detecting their radio broadcasts.arrow_forwardAn atom can be formed when a negative muon is captured by a proton. The muon has the same charge as the electron and a mass 207 times that of the electron. Calculate the frequency of the photon emitted when this atom makes the transition from n=2 to the n=1 state. Assume that the muon is orbiting a stationary proton.arrow_forward(a) Calculate the number of photoelectrons per second ejected from a 1.00-mm2 area of sodium metal by 500-nm M radiation having an intensity of 1.30 kW/m2 (the intensity of sunlight above the Earth's atmosphere). (b) Given that the binding energy is 2.28 eV, what power is carried away by the electrons? (c) The electrons carry away less power than brought in by the photons. Where does the other power go? How can it be recovered?arrow_forward
- The velocity of a proton emerging from a Van de Graaff accelerator is 25.0% of the speed of light. (a) What is the proton's wavelength? (b) What is its kinetic energy, assuming it is nonrelativistic? (c) What was the equivalent voltage through which it was accelerated?arrow_forwardSome of the most powerful lasers are based on the energy levels of neodymium in solids, such as glass, as shown in Figure 30.65. (a) What average wavelength light can pump the neodymium into the levels above its metastable state? (b) Verify that the 1.17 eV transition produces 1.06 m radiation. Figure 30.65 Neodymium atoms in glass have these energy levels, one of which is metastable. The group of levels above the metastable state is convenient for achieving a population inversion, since photons of many different energies can be absorbed by atoms in the ground state.arrow_forwardAn X-ray tube accelerates an electron with an applied voltage of 50 kV toward a metal target, (a) What is the shortest-wavelength X-ray radiation generated at the target? (b) Calculate the photon energy in eV. (c) Explain the relationship of the photon energy to the applied voltage.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning