Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 27.81AP
The potential difference across the filament of a light-bulb is maintained at a constant value while equilibrium temperature is being reached. The steady-state current in the bulb is only one-tenth of the current drawn by the bulb when it is first turned on. If the temperature coefficient of resistivity for the bulb at 20.0°C is 0.004 50 (°C)-1 and the resistance increases linearly with increasing temperature, what is the final operating temperature of the filament?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
When at 25 degrees Celsius, a certain resistor has a resistance of 220 Ohms. When connected to a 11.0 Volt power supply, the current in the circuit is measured to be 48.9 mA. What is the temperature of the resistor if its temperature coefficient of resistivity is 4.00 x 10^-3 per degree Celsius?
A common flashlight bulb is rated at 0.34 A and 2.3 V (the values of the current and voltage under operating conditions). If the
resistance of the bulb filament at room temperature (20°C) is 1.0 2, what is the temperature of the filament when the bulb is on? The
temperature coefficient of resistivity is 3.7 x 10-3 K-1 for the filament material.
A common flashlight bulb is rated at 0.25 A and 2.6 V (the values of the current and voltage under operating conditions). If the resistance of the bulb filament at room temperature (20°C) is 1.1 Ω, what is the temperature of the filament when the bulb is on? The temperature coefficient of resistivity is 5.3 × 10-3 K-1 for the filament material.
Chapter 27 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Ch. 27 - Consider positive and negative charges of equal...Ch. 27 - Prob. 27.2QQCh. 27 - Prob. 27.3QQCh. 27 - When does an incandescent lightbulb carry more...Ch. 27 - For the two lightbulbs shown in Figure 27.13, rank...Ch. 27 - Car batteries are often rated in ampere-hours....Ch. 27 - Prob. 27.2OQCh. 27 - A cylindrical metal wire at room temperature is...Ch. 27 - Prob. 27.4OQCh. 27 - A potential difference of 1.00 V is maintained...
Ch. 27 - Three wires are made of copper having circular...Ch. 27 - A metal wire of resistance R is cut into three...Ch. 27 - A metal wire has a resistance of 10.0 at a...Ch. 27 - The current-versus-voltage behavior of a certain...Ch. 27 - Two conductors made of die same material are...Ch. 27 - Two conducting wires A and B of the same length...Ch. 27 - Two lightbulbs both operate on 120 V. One has a...Ch. 27 - Wire B has twice the length and twice the radius...Ch. 27 - If you were 10 design an electric healer using...Ch. 27 - Prob. 27.2CQCh. 27 - When the potential difference across a certain...Ch. 27 - Over the lime interval after a difference in...Ch. 27 - How does the resistance for copper and for silicon...Ch. 27 - Use the atomic theory of matter to explain why the...Ch. 27 - If charges flow very slowly through a metal, why...Ch. 27 - Newspaper articles often contain statements such...Ch. 27 - Prob. 27.1PCh. 27 - A small sphere that carries a charge q is whirled...Ch. 27 - Prob. 27.3PCh. 27 - In the Bohr model of the hydrogen atom (which will...Ch. 27 - A proton beam in an accelerator carries a current...Ch. 27 - Prob. 27.6PCh. 27 - Prob. 27.7PCh. 27 - Figure P26.6 represents a section of a conductor...Ch. 27 - The quantity of charge q (in coulombs) that has...Ch. 27 - A Van de Graaff generator (see Problem 24)...Ch. 27 - The electron beam emerging from a certain...Ch. 27 - An electric current in a conductor varies with...Ch. 27 - A teapot with a surface area of 700 cm2 is to be...Ch. 27 - A lightbulb has a resistance of 240 when...Ch. 27 - Prob. 27.15PCh. 27 - A 0.900-V potential difference is maintained...Ch. 27 - An electric heater carries a current of 13.5 A...Ch. 27 - Prob. 27.18PCh. 27 - Prob. 27.19PCh. 27 - Prob. 27.20PCh. 27 - A portion of Nichrome wire of radius 2.50 mm is to...Ch. 27 - If the current carried by a conductor is doubled,...Ch. 27 - Prob. 27.23PCh. 27 - Prob. 27.24PCh. 27 - If the magnitude of the drill velocity of free...Ch. 27 - Prob. 27.26PCh. 27 - Prob. 27.27PCh. 27 - While taking photographs in Death Valley on a day...Ch. 27 - Prob. 27.29PCh. 27 - Plethysmographs are devices used for measuring...Ch. 27 - Prob. 27.31PCh. 27 - An engineer needs a resistor with a zero overall...Ch. 27 - An aluminum wire with a diameter of 0.100 mm has a...Ch. 27 - Review. Ail aluminum rod has a resistance of 1.23 ...Ch. 27 - At what temperature will aluminum have a...Ch. 27 - Assume that global lightning on the Earth...Ch. 27 - In a hydroelectric installation, a turbine...Ch. 27 - A Van de Graaff generator (see Fig. 25.23) is...Ch. 27 - A certain waffle iron is rated at 1.00 kW when...Ch. 27 - The potential difference across a resting neuron...Ch. 27 - Suppose your portable DVD player draws a current...Ch. 27 - Review. A well-insulated electric water healer...Ch. 27 - A 100-W lightbulb connected to a 120-V source...Ch. 27 - The cost of energy delivered to residences by...Ch. 27 - Prob. 27.45PCh. 27 - Residential building codes typically require the...Ch. 27 - Assuming the cost of energy from the electric...Ch. 27 - An 11.0-W energy-efficient fluorescent lightbulb...Ch. 27 - A coil of Nichrome wire is 25.0 m long. The wire...Ch. 27 - Review. A rechargeable battery of mass 15.0 g...Ch. 27 - A 500-W heating coil designed to operate from 110...Ch. 27 - Why is the following situation impossible? A...Ch. 27 - A certain toaster has a heating element made of...Ch. 27 - Make an order-of-magnitude estimate of the cost of...Ch. 27 - Review. The healing element of an electric coffee...Ch. 27 - A 120-V motor has mechanical power output of 2.50...Ch. 27 - Prob. 27.57APCh. 27 - Prob. 27.58APCh. 27 - Prob. 27.59APCh. 27 - Lightbulb A is marked 25 W 120 V, and lightbulb B...Ch. 27 - One wire in a high-voltage transmission line...Ch. 27 - An experiment is conducted to measure the...Ch. 27 - A charge Q is placed on a capacitor of capacitance...Ch. 27 - Review. An office worker uses an immersion heater...Ch. 27 - Prob. 27.65APCh. 27 - An all-electric car (not a hybrid) is designed to...Ch. 27 - Prob. 27.67APCh. 27 - Prob. 27.68APCh. 27 - An electric utility company supplies a customers...Ch. 27 - The strain in a wire can be monitored and computed...Ch. 27 - An oceanographer is studying how the ion...Ch. 27 - Why is the following situation impossible? An...Ch. 27 - Prob. 27.73APCh. 27 - A close analogy exists between the flow of energy...Ch. 27 - Review. When a straight wire is warmed, its...Ch. 27 - Prob. 27.76APCh. 27 - Review. A parallel-plate capacitor consists of...Ch. 27 - The dielectric material between the plates of a...Ch. 27 - Prob. 27.79APCh. 27 - Prob. 27.80APCh. 27 - The potential difference across the filament of a...Ch. 27 - Prob. 27.82CPCh. 27 - A spherical shell with inner radius ra and outer...Ch. 27 - Material with uniform resistivity is formed into...Ch. 27 - A material of resistivity is formed into the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Resistors are commonly rated at 18W,14W,12W ,1 W and 2 W for use in electrical circuits. If a current of1 = 2.00 A is accidentally passed through a R=1.00 resistor rated at 1 W, what would be the most probable outcome? Is there anything that can be done to prevent such an accident?arrow_forwardA platinum resistance thermometer (PRT) is a transducer which measures temperature 0 by means of consequent change of electrical resistance RT between its two terminals. Such a PRT has the following quadratic characteristic: RT=Ro [1+A0+BO^2] The PRT is calibrated so that its resistance is Ro = 100 Q at a reference temperature of 0 = 0°C. The coefficients have the following values: A = +4.0 x 10-3 °C-1 B = -5.0 x 10-6 oc-2 Determine sensitivity of this transducer at temperatures of +50 °C. Select one: O a. 0.45 Q/°C Ob. -0.45 Q/°C -0.35 Ω/ΟC d. 0.4 0/°C O e. 0.35 Q/°C O f. -0.4 0/PCarrow_forwardA common flashlight bulb is rated at 0.37 A and 2.2 V (the values of the current and voltage under operating conditions). If the resistance of the bulb filament at room temperature (20°C) is 1.1 N, what is the temperature of the filament when the bulb is on? The temperature coefficient of resistivity is 5.1 x 10-3 K-1 for the filament material. Number Units Use correct number of significant digits; the tolerance is +/-1 in the 2nd significant digitarrow_forward
- Resistance of a metal wire of length 1 m is 26 Ω at 20°C. If the diameter of the wire is 0.3 mm, what will be the resistivity of the metal at that temperature?arrow_forwardAt 20°C, the carbon resistor in an electric circuit connected to a 5.0-V battery has a resistance of 2.0 X 102 ?. What is the current in the circuit when the temperature of the carbon rises to 80°C? The temperature coefficient of resistivity for carbon is -0.5 X 10-3 ℃-1.arrow_forwardThe specific resistance of platinum at 0oc is 10.3 .cm . how long must a wire of platinum be to have a resistance of 4 at 0oc , if the diameter ( d ) = 0.0274 cm . What will be the resistance of the wire at 100oc if the temperature coefficient ( ∝ ) of platinum is 0.0038 per oC .arrow_forward
- A 5-meter-long conductor with diameter of 5mm is connected to a source and an external resistance. The temperature of the conductor changes from 25 degrees to 35 degrees. Determine the resistivities and resistances at each temperature. Thermal coefficient of the conductor is 40 x 10-3 and the conductivity at 20°C is 2.5465x 104 per ohm-meterarrow_forwardA 5-meter-long conductor wth the diameter of 5mm is connected to a source and an external resistance. The temperature of the conductor changes from 25 degrees to 35 degrees. Determine the resistivities and resistances at each temperature. Thermal coefficient of the conductor is 40 x 10-3 and the conductivity at 20°C is 2.5465 x 104 per ohm-meter.arrow_forwardA resistor made of Nichrome wire is used in an application where its resistance cannot change more than 1.65% from its value at 20.0°C. Over what temperature range can it be used? The temperature coefficient of resistivity for Nichrome is 0.4 x 10-3 (°C)-1, 61.25 What is the expression that gives the temperature dependence of resistance? What is the ratio of R to R, if the change cannot be more than 1.65%?°C 21.25 What is the expression that gives the temperature dependence of resistance? What is the ratio of R to Ro if the change cannot be more than 1.65%?°C lower limit upper limit A jeweler uses a draw plate to stretch a wire to five times its original length. By what factor does its resistance increase? 5 What happens to the cross sectional area of the wire when the length is increased?arrow_forward
- The resistance of a copper conductor is 0.8 Ω at a temperature of 20 ˚C. It is placed in a heating furnace and it is observed that the resistance increases by 50%. What is the oven temperature? The resistivity of copper is 1.678×10-8 Ωm and the temperature coefficient of resistivity is 6.8×10-3 K-1arrow_forwardA thin silver wire has a resistance of 0.5 ohms when its temperature(in K) is To. The wire is then heated up to To+50 (in K). Calculate the percent difference in its resistance assuming that the length and the diameter of the wire do not change with temperature.arrow_forwardA tungsten wire in a vacuum has length 26.0 cm and radius 6.00 mm. A potential difference is applied across it. (a) What is the resistance of the wire at 293 K? Ω (b) Suppose the wire reaches an equilibrium temperature such that it emits 70.0 W in the form of radiation. Neglecting absorption of any radiation from its environment, what is the temperature of the wire? (Note: e = 0.320 for tungsten.) K (c) What is the resistance of the wire at the temperature found in part (b)? Assume the temperature changes linearly over this temperature range. Ω. (d) What voltage drop is required across the wire? (e) Why are tungsten lightbulbs energetically inefficient as light sources?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY