DATA You are a technician testing the operation of a cyclotron. An alpha particle in the device moves in a circular path in a magnetic field B → that is directed perpendicular to the path of the alpha particle. You measure the number of revolutions per second (the frequency f ) of the alpha particle as a function of the magnetic field strength B . Figure F27.80 shows your results and the best straight-line fit to your data, (a) Use the graph in Fig. P27.80 to calculate the charge-to-mass ratio of the alpha particle, which has charge +2 e . On the basis of your data, what is the mass of an alpha particle? (b) With B = 0.300 T. what are the cyclotron frequencies f of a proton and of an electron? How do these f values compare to the frequency of an alpha particle? (c) With B = 0.300 T, what speed and kinetic energy does an alpha particle have if the radius of its path is 12.0 cm? Figure F27.80
DATA You are a technician testing the operation of a cyclotron. An alpha particle in the device moves in a circular path in a magnetic field B → that is directed perpendicular to the path of the alpha particle. You measure the number of revolutions per second (the frequency f ) of the alpha particle as a function of the magnetic field strength B . Figure F27.80 shows your results and the best straight-line fit to your data, (a) Use the graph in Fig. P27.80 to calculate the charge-to-mass ratio of the alpha particle, which has charge +2 e . On the basis of your data, what is the mass of an alpha particle? (b) With B = 0.300 T. what are the cyclotron frequencies f of a proton and of an electron? How do these f values compare to the frequency of an alpha particle? (c) With B = 0.300 T, what speed and kinetic energy does an alpha particle have if the radius of its path is 12.0 cm? Figure F27.80
DATA You are a technician testing the operation of a cyclotron. An alpha particle in the device moves in a circular path in a magnetic field
B
→
that is directed perpendicular to the path of the alpha particle. You measure the number of revolutions per second (the frequency f) of the alpha particle as a function of the magnetic field strength B. Figure F27.80 shows your results and the best straight-line fit to your data, (a) Use the graph in Fig. P27.80 to calculate the charge-to-mass ratio of the alpha particle, which has charge +2e. On the basis of your data, what is the mass of an alpha particle? (b) With B = 0.300 T. what are the cyclotron frequencies f of a proton and of an electron? How do these f values compare to the frequency of an alpha particle? (c) With B = 0.300 T, what speed and kinetic energy does an alpha particle have if the radius of its path is 12.0 cm?
Need help on the following questions on biomechanics. (Please refer to images below)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his handat an angle resulting in the reaction force shown.A) Find the resultant force (acting on the Center of Mass)B) Find the resultant moment (acting on the Center of Mass)C) Draw the resultant force and moment about the center of mass on the figure below. Will the gymnast rotate, translate, or both? And in which direction?
Please help me on the following question (Please refer to image below)An Olympic lifter (m = 103kg) is holding a lift with a mass of 350 kg. The barexerts a purely vertical force that is equally distributed between both hands. Each arm has amass of 9 kg, are 0.8m long and form a 40° angle with the horizontal. The CoM for each armis 0.5 m from hand. Assuming the lifter is facing us in the diagram below, his right deltoidinserts 14cm from the shoulder at an angle of 13° counter-clockwise from the humerus.A) You are interested in calculating the force in the right deltoid. Draw a free body diagramof the right arm including the external forces, joint reaction forces, a coordinate system andstate your assumptions.B) Find the force exerted by the right deltoidC) Find the shoulder joint contact force. Report your answer using the magnitude and directionof the shoulder force vector.
Chapter 27 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.