Concept explainers
DATA You are using a type of mass spectrometer to measure charge-to-mass ratios of atomic ions. In the device, atoms are ionized with a beam of electrons to produce positive ions, which are then accelerated through a potential difference V. (The final speed of the ions is great enough that you can ignore their initial speed.) The ions then enter a region in which a uniform magnetic field
(a) How can you plot the data points so that they will fall close to a straight line? Explain. (b) Construct the graph described in part (a). Use the slope of the best-fit straight line to calculate the charge-to-mass ratio (q/m) for the ion. (c) For V = 20.0 kV, what is the speed of the ions as they enter the
Learn your wayIncludes step-by-step video
Chapter 27 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Additional Science Textbook Solutions
The Cosmic Perspective
University Physics Volume 1
Conceptual Integrated Science
Modern Physics
Essential University Physics: Volume 1 (3rd Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
- A particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardA wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0, (b) 90.0, and (c) 120.arrow_forwardIn Figure P22.43, the current in the long, straight wire is I1 = 5.00 A and the wire lies in the plane of the rectangular loop, which carries a current I2 = 10.0 A. The dimensions in the figure are c = 0.100 m, a = 0.150 m, and = 0.450 m. Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire. Figure P22.43 Problems 43 and 44.arrow_forward
- A proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forwardA cosmic-ray proton in interstellar space has an energy of 10.0 MeV and executes a circular orbit having a radius equal to that of Mercury’s orbit around the Sun (5.80 × 1010 m). What is the magnetic field in that region of space?arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forward
- A long, straight wire lies on a horizontal table and carries a current of 1.20 μA. In a vacuum, a proton moves parallel to the wire (opposite the current) with a constant speed of 2.30 × 104 m/s at a distance d above the wire. Ignoring the magnetic field due to the Earth, determine the value of d.arrow_forwardA thin copper rod 1.00 m long has a mass of 50.0 g. What is the minimum current in the rod that would allow it to levitate above the ground in a magnetic field of magnitude 0.100 T? (a) 1.20 A (b) 2.40 A (c) 4.90 A (d) 9.80 A (e) none of those answersarrow_forwardA proton travels with a speed of 3.00 106 m/s at an angle of 37.0 with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?arrow_forward
- Solenoid A has length L and N turns, solenoid B has length 2L and N turns, and solenoid C has length L/2 and 2N turns. If each solenoid carries the same current, rank the magnitudes of the magnetic fields in the centers of the solenoids from largest to smallest.arrow_forwardAssume the region to the right of a certain plane contains a uniform magnetic field of magnitude 1.00 mT and the field is zero in the region to the left of the plane as shown in Figure P22.71. An electron, originally traveling perpendicular to the boundary plane, passes into the region of the field. (a) Determine the time interval required for the electron to leave the field-filled region, noting that the electrons path is a semicircle. (b) Assuming the maximum depth of penetration into the field is 2.00 cm, find the kinetic energy of the electron.arrow_forwardA proton (charge + e, mass mp), a deuteron (charge + e, mass 2mp), and an alpha particle (charge +2e, mass 4mp) are accelerated from rest through a common potential difference V. Each of the particles enters a uniform magnetic field B, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius rp. In terms of rp, determine (a) the radius rd of the circular orbit for the deuteron and (b) the radius ra for the alpha particle.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning