CALC A Voice Coil . It was shown in Section 27.7 that the net force on a current loop in a uniform magnetic field is zero. The magnetic force on the voice coil of a loudspeaker (see Fig. 27.28) is nonzero because the magnetic field at the coil is not uniform. A voice coil in a loudspeaker has 50 turns of wire and a diameter of 1.56 cm, and the current in the coil is 0.950 A. Assume that the magnetic field at each point of the coil has a constant magnitude of 0.220 T and is directed at an angle of 60.0° outward from the normal to the plane of the coil ( Fig. P27.73 ). Let the axis of the coil be in the y -direction. The current in the coil is in the direction shown (counterclockwise as viewed from a point above the coil on the y -axis). Calculate the magnitude and direction of the net magnetic force on the coil. Figure P27.73
CALC A Voice Coil . It was shown in Section 27.7 that the net force on a current loop in a uniform magnetic field is zero. The magnetic force on the voice coil of a loudspeaker (see Fig. 27.28) is nonzero because the magnetic field at the coil is not uniform. A voice coil in a loudspeaker has 50 turns of wire and a diameter of 1.56 cm, and the current in the coil is 0.950 A. Assume that the magnetic field at each point of the coil has a constant magnitude of 0.220 T and is directed at an angle of 60.0° outward from the normal to the plane of the coil ( Fig. P27.73 ). Let the axis of the coil be in the y -direction. The current in the coil is in the direction shown (counterclockwise as viewed from a point above the coil on the y -axis). Calculate the magnitude and direction of the net magnetic force on the coil. Figure P27.73
CALC A Voice Coil. It was shown in Section 27.7 that the net force on a current loop in a uniform magnetic field is zero. The magnetic force on the voice coil of a loudspeaker (see Fig. 27.28) is nonzero because the magnetic field at the coil is not uniform. A voice coil in a loudspeaker has 50 turns of wire and a diameter of 1.56 cm, and the current in the coil is 0.950 A. Assume that the magnetic field at each point of the coil has a constant magnitude of 0.220 T and is directed at an angle of 60.0° outward from the normal to the plane of the coil (Fig. P27.73). Let the axis of the coil be in the y-direction. The current in the coil is in the direction shown (counterclockwise as viewed from a point above the coil on the y-axis). Calculate the magnitude and direction of the net magnetic force on the coil.
Jason Fruits/Indiana University Research Communications
Silver/
silver oxide
Zinc
zinc/oxide
Car P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals. At instant 3, cars P and Q are adjacent to one another (i.e., they have the same position). In the reference frame o f the road, at instant 3 i s the speed o f car Q greater than, less than, or equal to the speed of car P? Explain.
Car P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.