Mass Spectrograph . A mass spectrograph is used to measure the masses of ions, or to separate ions of different masses (see Section 27.5). In one design for such an instrument, ions with mass m and charge q are accelerated through a potential difference V . They then enter a uniform magnetic field that is perpendicular to their velocity, and they arc deflected in a semicircular path of radius R . A detector measures where the ions complete the semicircle and from this it is easy to calculate R . (a) Derive the equation for calculating the mass of the ion from measurements of B , V , R , and q . (b) What potential difference V is needed so that singly ionized 12 C atoms will have R = 50.0 cm in a 0.150-T magnetic field? (c) Suppose the beam consists of a mixture of 12 C and 14 C ions. If υ and B have the same values as in part (b), calculate the separation of these two isotopes at the detector. Do you think that this beam separation is sufficient for the two ions to be distinguished? (Make the assumption described in Problem 27.59 for the masses of the ions.)
Mass Spectrograph . A mass spectrograph is used to measure the masses of ions, or to separate ions of different masses (see Section 27.5). In one design for such an instrument, ions with mass m and charge q are accelerated through a potential difference V . They then enter a uniform magnetic field that is perpendicular to their velocity, and they arc deflected in a semicircular path of radius R . A detector measures where the ions complete the semicircle and from this it is easy to calculate R . (a) Derive the equation for calculating the mass of the ion from measurements of B , V , R , and q . (b) What potential difference V is needed so that singly ionized 12 C atoms will have R = 50.0 cm in a 0.150-T magnetic field? (c) Suppose the beam consists of a mixture of 12 C and 14 C ions. If υ and B have the same values as in part (b), calculate the separation of these two isotopes at the detector. Do you think that this beam separation is sufficient for the two ions to be distinguished? (Make the assumption described in Problem 27.59 for the masses of the ions.)
Mass Spectrograph. A mass spectrograph is used to measure the masses of ions, or to separate ions of different masses (see Section 27.5). In one design for such an instrument, ions with mass m and charge q are accelerated through a potential difference V. They then enter a uniform magnetic field that is perpendicular to their velocity, and they arc deflected in a semicircular path of radius R. A detector measures where the ions complete the semicircle and from this it is easy to calculate R. (a) Derive the equation for calculating the mass of the ion from measurements of B, V, R, and q. (b) What potential difference V is needed so that singly ionized 12C atoms will have R = 50.0 cm in a 0.150-T magnetic field? (c) Suppose the beam consists of a mixture of 12C and 14C ions. If υ and B have the same values as in part (b), calculate the separation of these two isotopes at the detector. Do you think that this beam separation is sufficient for the two ions to be distinguished? (Make the assumption described in Problem 27.59 for the masses of the ions.)
Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2
In the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?
No chatgpt pls will upvote
Chapter 27 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.