EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100461260
Author: SERWAY
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 27, Problem 27.60AP

Lightbulb A is marked “25 W 120 V,” and lightbulb B is marked “100 W 120 V.” These labels mean that each lightbulb has its respective power delivered to it when it is connected to a constant 120-V source. (a) Find the resistance of each lightbulb. (b) During what time interval does 1.00 C pass into lightbulb A? (c) Is this charge different upon its exit versus its entry into the lightbulb? Explain. (d) In what time interval does 1.00 J pass into lightbulb A? (e) By what mechanisms does this energy enter and exit the lightbulb? Explain. (f) Find the cost of running lightbulb A continuously for 30.0 days, assuming the electric company sells its product at $0.110 per kWh.

(a)

Expert Solution
Check Mark
To determine
The resistance of each light bulb.

Answer to Problem 27.60AP

The resistance of lightbulb A is 576Ω and resistance of lightbulb B is 144Ω .

Explanation of Solution

Given information: Power of light bulb A is 25W , and voltage across light bulb A is 120V , power of light bulb B is 100W , and voltage across light bulb B is 120V , constant voltage source is 120V .

Explanation:

Formula to calculate the resistance of lightbulb A.

PA=V2RARA=V2PA (1)

Here,

PA is the power of light bulb A.

RA is the resistance of lightbulb A.

V is the voltage across light bulb A.

Substitute 120V for V , 25W for PA in equation (1) to find RA ,

RA=(120V)225W=576Ω

Thus, the resistance of lightbulb A is 576Ω .

Formula to calculate the resistance of lightbulb B.

PB=V2RBRB=V2PB (2)

Here,

PB is the power of light bulb B.

RB is the resistance of lightbulb B.

V is the voltage across light bulb B.

Substitute 120V for V , 100W for PB in equation (2) to find RB ,

RB=(120V)2100W=144Ω

Thus, the resistance of lightbulb B is 144Ω .

Conclusion:

Therefore, the resistance of lightbulb A is 576Ω and resistance of lightbulb B is 144Ω .

(b)

Expert Solution
Check Mark
To determine
The time interval through which 1.00C pass into light bulb A.

Answer to Problem 27.60AP

The time interval through which 1.00C pass into light bulb A is 4.808s .

Explanation of Solution

Given information: Power of light bulb A is 25W , and voltage across light bulb A is 120V , power of light bulb B is 100W , and voltage across light bulb B is 120V , constant voltage source is 120V , charge across that passes through light bulb A is 1.00C .

Explanation:

Formula to calculate the current flowing in th light bulb A.

IA=VRA (3)

Here,

IA is the current flowing in th light bulb A.

Substitute 120V for V , 576Ω for RA in equation (4) to find IA ,

IA=120V576Ω=0.208A

Thus, the current flowing in th light bulb A is 0.208A .

Formula to calculate the time interval through which 1.00C pass into light bulb A.

IA=Q1.00Ct1.00Ct1.00C=Q1.00CIA (4)

Here,

t1.00C is the time interval through which 1.00C pass into light bulb A.

Q1.00C is the charge across that passes through light bulb A.

Substitute 1.00C for Q1.00C , 0.208A for IA in equation (4) to find t1.00C ,

t1.00C=1.00C0.208A=4.8076s4.808s

Thus, the time interval through which 1.00C pass into light bulb A is 4.807s .

Conclusion:

Therefore, the time interval through which 1.00C pass into light bulb A is 4.807s .

(c)

Expert Solution
Check Mark
To determine
The reason that this charge is different upon its exit versus its entry into the light bulb or not.

Answer to Problem 27.60AP

This charge is not different upon its exit versus its entry into the light bulb because the current is charged over the time and is the same everywhere on the series circuit.

Explanation of Solution

Given information: Power of light bulb A is 25W , and voltage across light bulb A is 120V , power of light bulb B is 100W , and voltage across light bulb B is 120V , constant voltage source is 120V , charge across that passes through light bulb A is 1.00C .

Explanation:

No, the existing charge is the same amount as the entering charge into the light bulb because the current is charged over the time and is the same everywhere on the series circuit.

Thus, this charge is not different upon its exit versus its entry into the light bulb because the current is charged over the time and is the same everywhere on the series circuit.

Conclusion:

Therefore, this charge is not different upon its exit versus its entry into the light bulb because the current is charged over the time and is the same everywhere on the series circuit.

(d)

Expert Solution
Check Mark
To determine
The time interval through which 1.00J pass into light bulb A.

Answer to Problem 27.60AP

The time interval through which 1.00J pass into light bulb A is 0.04s .

Explanation of Solution

Given information: Power of light bulb A is 25W , and voltage across light bulb A is 120V , power of light bulb B is 100W , and voltage across light bulb B is 120V , constant voltage source is 120V , energy that passes through light bulb A is 1.00J .

Explanation:

Formula to calculate the time interval through which 1.00J pass into light bulb A.

EA=PA×t1.00Jt1.00J=EAPA (5)

Here,

t1.00J is the time interval through which 1.00J pass into light bulb A.

EA is the energy that passes through light bulb A

Substitute 1.00J for EA , 25W for PA in equation (5) to find t1.00J ,

t1.00J=1.00J25W=0.04s

Thus, the time interval through which 1.00J pass into light bulb A is 0.04s .

Conclusion:

Therefore, the time interval through which 1.00J pass into light bulb A is 0.04s .

(e)

Expert Solution
Check Mark
To determine
The mechanism through which this energy enter and exit the light bulb.

Answer to Problem 27.60AP

The mechanism through which this energy enter and exit the light bulb is that the bulb is connected to the electrical energy source by wires, usually by a wire like copper, which mainly carries the current of electrons into and out the bulb.

Explanation of Solution

Given information: Power of light bulb A is 25W , and voltage across light bulb A is 120V , power of light bulb B is 100W , and voltage across light bulb B is 120V , constant voltage source is 120V , energy that passes through light bulb A is 1.00J .

Explanation:

In this mechanism, the bulb is connected to the electrical energy source by wires, usually by a wire like copper, which mainly carries the current of electrons into and out the bulb.

Thus, the mechanism through which this energy enter and exit the light bulb is that the bulb is connected to the electrical energy source by wires, usually by a wire like copper, which mainly carries the current of electrons into and out the bulb.

Conclusion:

Therefore, the mechanism through which this energy enter and exit the light bulb is that the bulb is connected to the electrical energy source by wires, usually by a wire like copper, which mainly carries the current of electrons into and out the bulb.

(f)

Expert Solution
Check Mark
To determine
The cost of running light bulb A continuously for 30.0days .

Answer to Problem 27.60AP

The cost of running light bulb A continuously for 30.0days is $1.98 .

Explanation of Solution

Given information: Power of light bulb A is 25W , and voltage across light bulb A is 120V , power of light bulb B is 100W , and voltage across light bulb B is 120V , constant voltage source is 120V , energy that passes through light bulb A is 1.00J , running time of light bulb A is 30.0days , selling cost at which electric company sells product is $0.110/kWh .

Explanation:

Write the expression for the energy for light bulb A works continuously for 30.0days .

E30.0days=P×t (6)

Here,

E30.0days is the energy for light bulb A works continuously for 30.0days .

P is the power of light bulb A.

t is the running time of light bulb A.

Substitute 25W for P , 30.0days for t in equation (6) to find E30.0days ,

E30.0days=25W×(30.0days×24h1day)=18000Wh=18kWh

Thus, the energy for light bulb A works continuously for 30.0days is 18kWh .

Formula to calculate the cost of running light bulb A continuously for 30.0days .

CR=E30.0days×CS (7)

Here,

CR is the cost of running light bulb A continuously for 30.0days .

CS is the selling cost at which electric company sells product.

Substitute 18kWh for E30.0days , $0.110/kWh for CS in equation (7) to find CR ,

CR=18kWh×$0.110/kWh=$1.98

Thus, the cost of running light bulb A continuously for 30.0days is $1.98 .

Conclusion:

Therefore, the cost of running light bulb A continuously for 30.0days is $1.98 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 27 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 27 - Three wires are made of copper having circular...Ch. 27 - A metal wire of resistance R is cut into three...Ch. 27 - A metal wire has a resistance of 10.0 at a...Ch. 27 - The current-versus-voltage behavior of a certain...Ch. 27 - Two conductors made of die same material are...Ch. 27 - Two conducting wires A and B of the same length...Ch. 27 - Two lightbulbs both operate on 120 V. One has a...Ch. 27 - Wire B has twice the length and twice the radius...Ch. 27 - If you were 10 design an electric healer using...Ch. 27 - Prob. 27.2CQCh. 27 - When the potential difference across a certain...Ch. 27 - Over the lime interval after a difference in...Ch. 27 - How does the resistance for copper and for silicon...Ch. 27 - Use the atomic theory of matter to explain why the...Ch. 27 - If charges flow very slowly through a metal, why...Ch. 27 - Newspaper articles often contain statements such...Ch. 27 - Prob. 27.1PCh. 27 - A small sphere that carries a charge q is whirled...Ch. 27 - Prob. 27.3PCh. 27 - In the Bohr model of the hydrogen atom (which will...Ch. 27 - A proton beam in an accelerator carries a current...Ch. 27 - Prob. 27.6PCh. 27 - Prob. 27.7PCh. 27 - Figure P26.6 represents a section of a conductor...Ch. 27 - The quantity of charge q (in coulombs) that has...Ch. 27 - A Van de Graaff generator (see Problem 24)...Ch. 27 - The electron beam emerging from a certain...Ch. 27 - An electric current in a conductor varies with...Ch. 27 - A teapot with a surface area of 700 cm2 is to be...Ch. 27 - A lightbulb has a resistance of 240 when...Ch. 27 - Prob. 27.15PCh. 27 - A 0.900-V potential difference is maintained...Ch. 27 - An electric heater carries a current of 13.5 A...Ch. 27 - Prob. 27.18PCh. 27 - Prob. 27.19PCh. 27 - Prob. 27.20PCh. 27 - A portion of Nichrome wire of radius 2.50 mm is to...Ch. 27 - If the current carried by a conductor is doubled,...Ch. 27 - Prob. 27.23PCh. 27 - Prob. 27.24PCh. 27 - If the magnitude of the drill velocity of free...Ch. 27 - Prob. 27.26PCh. 27 - Prob. 27.27PCh. 27 - While taking photographs in Death Valley on a day...Ch. 27 - Prob. 27.29PCh. 27 - Plethysmographs are devices used for measuring...Ch. 27 - Prob. 27.31PCh. 27 - An engineer needs a resistor with a zero overall...Ch. 27 - An aluminum wire with a diameter of 0.100 mm has a...Ch. 27 - Review. Ail aluminum rod has a resistance of 1.23 ...Ch. 27 - At what temperature will aluminum have a...Ch. 27 - Assume that global lightning on the Earth...Ch. 27 - In a hydroelectric installation, a turbine...Ch. 27 - A Van de Graaff generator (see Fig. 25.23) is...Ch. 27 - A certain waffle iron is rated at 1.00 kW when...Ch. 27 - The potential difference across a resting neuron...Ch. 27 - Suppose your portable DVD player draws a current...Ch. 27 - Review. A well-insulated electric water healer...Ch. 27 - A 100-W lightbulb connected to a 120-V source...Ch. 27 - The cost of energy delivered to residences by...Ch. 27 - Prob. 27.45PCh. 27 - Residential building codes typically require the...Ch. 27 - Assuming the cost of energy from the electric...Ch. 27 - An 11.0-W energy-efficient fluorescent lightbulb...Ch. 27 - A coil of Nichrome wire is 25.0 m long. The wire...Ch. 27 - Review. A rechargeable battery of mass 15.0 g...Ch. 27 - A 500-W heating coil designed to operate from 110...Ch. 27 - Why is the following situation impossible? A...Ch. 27 - A certain toaster has a heating element made of...Ch. 27 - Make an order-of-magnitude estimate of the cost of...Ch. 27 - Review. The healing element of an electric coffee...Ch. 27 - A 120-V motor has mechanical power output of 2.50...Ch. 27 - Prob. 27.57APCh. 27 - Prob. 27.58APCh. 27 - Prob. 27.59APCh. 27 - Lightbulb A is marked 25 W 120 V, and lightbulb B...Ch. 27 - One wire in a high-voltage transmission line...Ch. 27 - An experiment is conducted to measure the...Ch. 27 - A charge Q is placed on a capacitor of capacitance...Ch. 27 - Review. An office worker uses an immersion heater...Ch. 27 - Prob. 27.65APCh. 27 - An all-electric car (not a hybrid) is designed to...Ch. 27 - Prob. 27.67APCh. 27 - Prob. 27.68APCh. 27 - An electric utility company supplies a customers...Ch. 27 - The strain in a wire can be monitored and computed...Ch. 27 - An oceanographer is studying how the ion...Ch. 27 - Why is the following situation impossible? An...Ch. 27 - Prob. 27.73APCh. 27 - A close analogy exists between the flow of energy...Ch. 27 - Review. When a straight wire is warmed, its...Ch. 27 - Prob. 27.76APCh. 27 - Review. A parallel-plate capacitor consists of...Ch. 27 - The dielectric material between the plates of a...Ch. 27 - Prob. 27.79APCh. 27 - Prob. 27.80APCh. 27 - The potential difference across the filament of a...Ch. 27 - Prob. 27.82CPCh. 27 - A spherical shell with inner radius ra and outer...Ch. 27 - Material with uniform resistivity is formed into...Ch. 27 - A material of resistivity is formed into the...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY