University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 27.15DQ
The magnetic force acting on a charged particle can never do work because at every instant the force is perpendicular to the velocity. The torque exerted by a magnetic field can do work on a current loop when the loop rotates. Explain how these seemingly contradictory statements can be reconciled.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 27 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 27.1 - Suppose you cut off the part of the compass needle...Ch. 27.2 - Prob. 27.2TYUCh. 27.3 - Imagine moving along the axis of the...Ch. 27.4 - Prob. 27.4TYUCh. 27.5 - In Example 27.6 He+ ions with charge +e move at...Ch. 27.6 - The accompanying figure shows a top view of two...Ch. 27.7 - Figure 27.13c depicts the magnetic field lines due...Ch. 27.8 - Prob. 27.8TYUCh. 27.9 - A copper wire of square cross section is oriented...Ch. 27 - Can a charged particle move through a magnetic...
Ch. 27 - Prob. 27.2DQCh. 27 - Section 27.2 describes a procedure for finding the...Ch. 27 - The magnetic force on a moving charged particle is...Ch. 27 - A charged particle is fired into a cubical region...Ch. 27 - If the magnetic force does no work on a charged...Ch. 27 - A charged particle moves through a region of space...Ch. 27 - How might a loop of wire carrying a current be...Ch. 27 - How could the direction of a magnetic field be...Ch. 27 - A loose, floppy loop of wire is carrying current...Ch. 27 - Prob. 27.11DQCh. 27 - Each of the lettered points at the corners of the...Ch. 27 - A student claims that if lightning strikes a metal...Ch. 27 - Prob. 27.14DQCh. 27 - The magnetic force acting on a charged particle...Ch. 27 - When the polarity of the voltage applied to a dc...Ch. 27 - Prob. 27.17DQCh. 27 - Prob. 27.18DQCh. 27 - A particle with a charge of 1.24 108C is moving...Ch. 27 - A particle of mass 0.195 g carries a charge of...Ch. 27 - In a 1.25-T magnetic field directed vertically...Ch. 27 - A particle with mass 1.81 103 kg and a charge of...Ch. 27 - An electron experiences a magnetic force of...Ch. 27 - An electron moves at 1.40 106m/s through a region...Ch. 27 - CP A particle with charge 7.80 C is moving with...Ch. 27 - CP A particle with charge 5.60 nC is moving in a...Ch. 27 - A group of particles is traveling in a magnetic...Ch. 27 - A flat, square surface with side length 3.40 cm is...Ch. 27 - A circular area with a radius of 6.50 cm lies in...Ch. 27 - A horizontal rectangular surface has dimensions...Ch. 27 - An open plastic soda bottle with an opening...Ch. 27 - The magnetic field B in a certain region is 0.128...Ch. 27 - An election at point A in Fig. E27.15 has a speed...Ch. 27 - Repeat Exercise 27.15 for the case in which the...Ch. 27 - CP A 150-g ball containing 4.00 108 excess...Ch. 27 - An alpha particle (a He nucleus, containing two...Ch. 27 - In an experiment with cosmic rays, a vertical beam...Ch. 27 - BIO Cyclotrons are widely used in nuclear medicine...Ch. 27 - Prob. 27.21ECh. 27 - In a cyclotron, the orbital radius of protons with...Ch. 27 - An electron in the beam of a cathode-ray tube is...Ch. 27 - A beam of protons traveling at 1.20 km/s enters a...Ch. 27 - A proton (q = 1.60 1019 C, m = 1.67 1027 kg)...Ch. 27 - A singly charged ion of 7Li (an isotope of...Ch. 27 - Crossed E and B Fields. A particle with initial...Ch. 27 - (a) What is the speed of a beam of electrons when...Ch. 27 - A 150-V battery is connected across two parallel...Ch. 27 - A singly ionized (one electron removed) 40K atom...Ch. 27 - Singly ionized (one electron removed) atoms are...Ch. 27 - In the Bainbridge mass spectrometer (see Fig....Ch. 27 - Prob. 27.33ECh. 27 - A straight, 2.5-m wire carries a typical household...Ch. 27 - A long wire carrying 4.50 A of current makes two...Ch. 27 - An electromagnet produces a magnetic field of...Ch. 27 - A thin, 50.0-cm-long metal bar with mass 750 g...Ch. 27 - A straight, vertical wire carries a current of...Ch. 27 - Prob. 27.39ECh. 27 - The plane of a 5.0 cm X 8.0 cm rectangular loop of...Ch. 27 - The 20.0 cm 35.0 cm rectangular circuit shown in...Ch. 27 - A rectangular coil of wire, 22.0 cm by 35.0 cm and...Ch. 27 - CP A uniform rectangular coil of total mass 212 g...Ch. 27 - Both circular coils A and B (Fig. E27.44) have...Ch. 27 - Prob. 27.45ECh. 27 - Prob. 27.46ECh. 27 - Prob. 27.47ECh. 27 - A dc motor with its rotor and field coils...Ch. 27 - Figure E27.49 shows a portion of a silver ribbon...Ch. 27 - Prob. 27.50ECh. 27 - When a particle of charge q 0 moves with a...Ch. 27 - A particle with charge 7.26 108C is moving in a...Ch. 27 - Prob. 27.53PCh. 27 - Prob. 27.54PCh. 27 - Prob. 27.55PCh. 27 - The magnetic poles of a small cyclotron produce a...Ch. 27 - A particle with negative charge q and mass m =...Ch. 27 - A particle of charge q 0 is moving at speed in...Ch. 27 - Suppose the electric field between the plates in...Ch. 27 - Mass Spectrograph. A mass spectrograph is used to...Ch. 27 - A straight piece of conducting wire with mass M...Ch. 27 - CP A 2.60-N metal bar, 0.850 m long and having a...Ch. 27 - BIO Determining Diet. One method for determining...Ch. 27 - CP A plastic circular loop has radius R, and a...Ch. 27 - Prob. 27.65PCh. 27 - A wire 25.0 cm long lies along the z-axis and...Ch. 27 - A long wire carrying 6.50 A of current makes two...Ch. 27 - The rectangular loop shown in Fig. P27.68 is...Ch. 27 - Prob. 27.69PCh. 27 - Prob. 27.70PCh. 27 - The loop of wire shown in Fig. P27.71 forms a...Ch. 27 - CP A uniform bar has mass 0.0120 kg and is 30.0 cm...Ch. 27 - CALC A Voice Coil. It was shown in Section 27.7...Ch. 27 - Prob. 27.74PCh. 27 - CALC Force on a Current Loop in a Nonuniform...Ch. 27 - Quark Model of the Neutron. The neutron is a...Ch. 27 - A circular loop of wire with area A lies in the...Ch. 27 - DATA You are using a type of mass spectrometer to...Ch. 27 - Prob. 27.79PCh. 27 - DATA You are a technician testing the operation of...Ch. 27 - A particle with charge 2.15 C and mass 3.20 1011...Ch. 27 - Prob. 27.82CPCh. 27 - If a proton is exposed to an external magnetic...Ch. 27 - BIO MAGNETIC FIELDS AND MRI. Magnetic resonance...Ch. 27 - The large magnetic fields used in MRI can produce...
Additional Science Textbook Solutions
Find more solutions based on key concepts
28. Consider the reaction
Express the rate of the reaction in terms of the change in concentration of e...
Chemistry: Structure and Properties (2nd Edition)
44. The right edge of the circuit in Figure P24.44 extends into a 50 mT uniform magnetic field. What are the ma...
College Physics: A Strategic Approach (3rd Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A 200Turn circular loop of radius 50.0 cm is vertical, with its axis on an east-west line. A current of 100 A circulates clockwise in the loop when viewed from the east. The Earth’s field here is due norm, parallel to me ground, with a strength of 3.00105T. What are 1he direction and magnitude of the torque on the loop? (b) Does this device have any practical applications as a motor?arrow_forwardReview. A charged particle of mass 1.50 g is moving at a speed of 1.50 104 m/s. Suddenly, a uniform magnetic field of magnitude 0.150 mT in a direction perpendicular to the particle's velocity is turned on and then turned olTin a time interval of 1.00 s. During this time interval, the magnitude and direction of the velocity of the particle undergo a negligible change, but the particle moves by a distance of 0.150 m in a direction perpendicular to the velocity. Kind the charge on the particle.arrow_forward, A proton, deuteron, and an alpha-particle ae all accelerated from rest through the same potential difference. They then enter the same magnetic field, moving perpendicular to it. Compute the ratios of the radii of their circular paths. Assume that md= 2wmp and ma= 4mp.arrow_forward
- Sodium ions (Na+) move at 0.851 m/s through a blood-stream in the arm of a person standing near a large magnet. The magnetic field has a strength of 0.254 T and makes an angle of 51.0 with the motion of the sodium ions. The arm contains 100 cm3 of blood with a concentration of 3.00 1020 Na+ ions per cubic centimeter. If no other ions were present in the arm, what would be the magnetic force on the arm?arrow_forwardThe current through a circular wire loop of radius 10 cm is 5.0 A. (a) Calculate themagnetic dipole moment of the loop. (b) What is the torque on the loop if it is in a uniform 0.20-T magnetic field such that p and B are directed at 300 to each other? (C) For this position, what is the potential energy of the dipole?arrow_forwardCan a constant magnetic field set into motion an electron initially at rest? Explain your answer.arrow_forward
- Review. A particle with a mass of 2.00 1016 kg and a charge of 30.0 nC starts from rest, is accelerated through a potential difference V, and is fired from a small source in a region containing a uniform, constant magnetic field of magnitude 0.600 T. The particle's velocity is perpendicular to the magnetic field lines. The circular orbit of the panicle as it returns to the location of the source encloses a magnetic flux of 15.0 Wb. (a) Calculate the particles speed. (b) Calculate the potential difference through which the particle was accelerated inside the source.arrow_forwardIs the magnetic field inside a toroid completely uniform? Almost uniform?arrow_forwardReview. A rod of mass m and radius R rests on two parallel rails (Fig. P28.23) that are a distance d apart and have a length L. The rod carries a current I in the direction shown and rolls along the rails without slipping. A uniform magnetic field B is directed perpendicular to the rod and the rails. If it starts from rest, what is the speed of the rod as it leaves the rails?arrow_forward
- A proton moving horizontally enters a region where a uniform magnetic field is directed perpendicular to the proton's velocity as shown in Figure OQ29.4. After the proton enters the field, does it (a) deflect downward, with its speed remaining constant; (b) deflect upward, moving in a semicircular path with constant speed, and exit the field moving to the left; (c) continue to move in the horizontal direction with constant velocity; (d) move in a circular orbit and become trapped by the field; or (e) deflect out of the plane of the paper?arrow_forwardFigure 22.62 shows a long straight wire just touching a loop carrying a current I1. Beth lie in the same plane. (a) What direction must the current I2 in the straight wire have to create a field at the center of the loop in the direction opposite to that created by the loop? (b) What is the ratio at I1/I2 that gives zero field strength at the center at the loop? (c) What is the direction of the field directly above the loop under this circumstance?arrow_forwardA circular coil of radius 5.0 cm is wound with five turns and carries a current of 5.0 A. If the coil is placed in a uniform magnetic field of strength 5.0 T, what is the maximum torque on it?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY