Astronomy
Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
bartleby

Concept explainers

Textbook Question
Book Icon
Chapter 27, Problem 26E

Once again in this chapter, we see the use of Kepler’s third law to estimate the mass of supermassive black holes. In the case of NGC 4261, this chapter supplied the result of the calculation of the mass of the black hole in NGC 4261. In order to get this answer, astronomers had to measure the velocity of particles in the ring of dust and gas that surrounds the black hole. How high were these velocities? Turn Kepler’s third law around and use the information given in this chapter about the galaxy NGC 4261-the mass of the black hole at its center and the diameter of the surrounding ring of dust and gas-to calculate how long it would take a dust particle in the ring to complete a single orbit around the black hole. Assume that the only force acting on the dust particle is the gravitational force exerted by the black hole. Calculate the velocity of the dust particle in km/s.

Blurred answer
Students have asked these similar questions
The Schwarzschild radius is the distance from an object at which the escape velocity is equal to the speed of light. A black hole is an object that is smaller than its Schwarzschild radius, so not even light itself can escape a black hole. The Schwarzschild radius r depends on the mass m of the black hole according to the equation (See image.) where G = 6.673 × 10-11 (Nm2)/(kg2) is the gravitational constant and c = 2.998 × 108 m/s is the speed of light.   1. Consider a black hole with a mass of 3.70 × 107M.. Use the given equation to find the Schwarzschild radius for this black hole. Remember that 1 M = 1.989 × 1030 kg and 1 N = 1 kg * m/s2   2. What is this radius in units of the solar radius? Remember that 1 R = 6.955 × 108 m.
Supermassive black holes are thought to exist at the center of many galaxies. What is the radius of such an object if it has a mass of 109 Suns?
what is the mass of the black hole ? give your answer as a multiple of Ms where Ms is the solar mass, Ms = 2.0 * 10^(30) express your answer as a multiple of the solar mass mass Ms.

Chapter 27 Solutions

Astronomy

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning