EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 25PCE
Two concave lenses, each with f = −15 cm, are separated by 7.5 cm. An object is placed 25 cm in front of one of the lenses. Find (a) the location and (b) the magnification of the final image produced by this lens combination.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 27 Solutions
EBK PHYSICS
Ch. 27.1 - If the f -number on a camera is increased does the...Ch. 27.2 - Prob. 2EYUCh. 27.3 - A magnifying glass is held over a ruled piece of...Ch. 27.4 - Rank the following microscopes in order of...Ch. 27.5 - In a typical telescope, is foppose greater than,...Ch. 27.6 - One advantage of reflecting telescopes over...Ch. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - If your near-point distance is N, how close can...Ch. 27 - When you open your eyes underwater, everything...
Ch. 27 - When you use a simple magnifying glass, does it...Ch. 27 - Does chromatic aberration occur in mirrors?...Ch. 27 - BIO Predict/Explain Octopus Eyes To focus its...Ch. 27 - Your friend is 1.7 m tall. (a) When she stands 3.2...Ch. 27 - Which forms the larger image on the retina of your...Ch. 27 - Approximating the eye as a single thin lens 2.70...Ch. 27 - Approximating the eye as a single thin lens 2.70...Ch. 27 - Find the far-point distance of a person whose...Ch. 27 - Four camera lenses have the following focal...Ch. 27 - BIO The focal length of the human eye is...Ch. 27 - Predict/Calculate A camera with a...Ch. 27 - The actual light sensor size of a digital camera...Ch. 27 - (a) Find the f -number of a telescope with an...Ch. 27 - You are taking a photo of a poster on the wall of...Ch. 27 - You are taking pictures of the beach at sunset...Ch. 27 - Predict/Calculate You are taking a photograph of a...Ch. 27 - The Hale Telescope The 200-in. (5.08-m) diameter...Ch. 27 - Predict/Explain Two professors are stranded on a...Ch. 27 - A clerk at the local grocery store wears glasses...Ch. 27 - The umpire at a baseball game wears glasses that...Ch. 27 - A police detective discovers eyeglasses with a...Ch. 27 - BIO The cornea of a normal human eye has an...Ch. 27 - A myopic student is shaving without his glasses....Ch. 27 - An eyeglass prescription calls for a lens with an...Ch. 27 - An optometrist prescribes contact lenses with a...Ch. 27 - Two thin lenses, with f1 = +25.0 cm and f2 = 42.5...Ch. 27 - Two concave lenses, each with f = 15 cm, are...Ch. 27 - BIO Predict/Calculate The focal length of a...Ch. 27 - BIO Predict/Calculate Diopter Change in Diving...Ch. 27 - A converging lens of focal length 9,000 cm is 18.0...Ch. 27 - Repeat Problem 28, this time with the coin placed...Ch. 27 - Find the focal length of contact lenses that would...Ch. 27 - Find the focal length of contact lenses that would...Ch. 27 - What focal length should a pair of contact lenses...Ch. 27 - Reading glasses with a power of + 1.50 diopters...Ch. 27 - A nearsighted person wears contacts with a focal...Ch. 27 - Without his glasses, Isaac can see objects clearly...Ch. 27 - A person whose near-point distance is 42.5 cm...Ch. 27 - A pair of eyeglasses is designed to allow a person...Ch. 27 - Predict/Calculate Your favorite aunt can read a...Ch. 27 - Predict/Calculate The relaxed eyes of a patient...Ch. 27 - Without glasses, your Uncle Albert can see things...Ch. 27 - A 2.05-cm-tall object is placed 30.0 cm to the...Ch. 27 - A simple camera telephoto lens consists of two...Ch. 27 - Predict/Calculate With unaided vision, a librarian...Ch. 27 - A persons prescription for her new bifocal glasses...Ch. 27 - A persons prescription for his new bifocal...Ch. 27 - Two lenses, with f1 = +20.0 cm and f2 = +30.0 cm,...Ch. 27 - A converging lens with a focal length of 4.0 cm is...Ch. 27 - Two magnifying glasses are for sale at a store....Ch. 27 - The Moon is 3476 km in diameter and orbits the...Ch. 27 - A magnifying glass is a single convex lens with a...Ch. 27 - Calculate the focal length of a magnifying lens...Ch. 27 - Predict/Calculate A student has two lenses, one of...Ch. 27 - A beetle 4.93 mm long is examined with a simple...Ch. 27 - To engrave wishes of good luck on a watch, an...Ch. 27 - A jeweler examines a diamond with a magnifying...Ch. 27 - In Problem 55, find the angular magnification when...Ch. 27 - Prob. 57PCECh. 27 - You have two lenses: lens 1 with a focal length of...Ch. 27 - Predict/Calculate Microscope objective A is...Ch. 27 - A compound microscope has an objective lens with a...Ch. 27 - BIO A typical red blood cell subtends an angle of...Ch. 27 - (a) If you treat a 10x eyepiece of a microscope as...Ch. 27 - The medium-power objective lens in a laboratory...Ch. 27 - A compound microscope has the objective and...Ch. 27 - The barrel of a compound microscope is 15 cm in...Ch. 27 - A compound microscope uses a 75.0-mm lens as the...Ch. 27 - The tube length of a microscope is defined to be...Ch. 27 - Two telescopes of different lengths produce the...Ch. 27 - A grade school student plans to build a 35-power...Ch. 27 - A 75-power refracting telescope has an eyepiece...Ch. 27 - An amateur astronomer wants to build a small...Ch. 27 - A pirate sights a distant ship with a spyglass...Ch. 27 - A telescope has lenses with focal lengths f1 =...Ch. 27 - Jason has a 25-power telescope whose objective...Ch. 27 - Roughing It with Science A professor shipwrecked...Ch. 27 - Galileos Telescope Galileos first telescope used a...Ch. 27 - The Moon has an angular size of 0 50 when viewed...Ch. 27 - A telescope is 275 mm long and has an objective...Ch. 27 - The focal length for light that strikes near the...Ch. 27 - The focal length for red light that strikes a...Ch. 27 - BIO Predict/Explain Intracorneal Ring An...Ch. 27 - CE BIO The lens in a normal human eye, with...Ch. 27 - CE BIO Predict/Explain Treating Cataracts When the...Ch. 27 - Galileos original telescope (Figure 27-29) used a...Ch. 27 - Predict/Calculate For each of the following cases,...Ch. 27 - Predict/Calculate You have two lenses, with focal...Ch. 27 - BIO The eye is actually a multiple-lens system,...Ch. 27 - BIO Fitting Contact Lenses with a Keratometer When...Ch. 27 - Pricey Stamp A rare 1918 Jenny stamp, depicting a...Ch. 27 - Prob. 90GPCh. 27 - Consider a Galilean telescope, as illustrated in...Ch. 27 - A farsighted person uses glasses with a refractive...Ch. 27 - Landing on an Aircraft Carrier The Fresnel Lens...Ch. 27 - A Cassegrain astronomical telescope uses two...Ch. 27 - Predict/Calculate A convex Ions (f = 20.0 cm) is...Ch. 27 - The diameter of a collimated laser beam can be...Ch. 27 - Consider three lenses with focal lengths of 25.0...Ch. 27 - Because a concave lens cannot form a real image of...Ch. 27 - A person with a near-point distance N uses a...Ch. 27 - Prob. 100GPCh. 27 - Prob. 101PPCh. 27 - Prob. 102PPCh. 27 - Prob. 103PPCh. 27 - Predict/Calculate Referring to Example 27-4...Ch. 27 - Predict/Calculate Referring to Example 27-4 in...Ch. 27 - Predict/Calculate Referring to Example 27-4 In...Ch. 27 - Predict/Calculate Referring to Example 27-6...Ch. 27 - Predict/Calculate Referring to Example 27-6...
Additional Science Textbook Solutions
Find more solutions based on key concepts
When you rub your cold hands together, the friction between them results in heat that warms your hands. Why doe...
Anatomy & Physiology (6th Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Choose the best answer to each of the following. Explain your reasoning. a photograph of a cluster of galaxies ...
Cosmic Perspective Fundamentals
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
19. Feather color in parakeets is produced by the blending of pigments produced from two biosynthetic pathways ...
Genetic Analysis: An Integrated Approach (3rd Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the following situation impossible? Consider the lensmirror combination shown in Figure P35.55. The lens has a focal length of fL = 0.200 m, and the mirror has a focal length of fM = 0.500 m. The lens and mirror are placed a distance d = 1.30 m apart, and an object is placed at p = 0.300 m from the lens. By moving a screen to various positions to the left of the lens, a student finds two different positions of the screen that produce a sharp image of the object. One of these positions corresponds to light leaving the object and traveling to the left through the lens. The other position corresponds to light traveling to the right from the object, reflecting from the mirror and then passing through the lens. Figure P35.55 Problem 55 and 57.arrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardThe left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forward
- In Figure P35.30, a thin converging lens of focal length 14.0 cm forms an image of the square abed, which is he = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c. and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb, represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P35.30arrow_forwardFigure P38.43 shows a concave meniscus lens. If |r1| = 8.50 cm and |r2| = 6.50 cm, find the focal length and determine whether the lens is converging or diverging. The lens is made of glass with index of refraction n = 1.55. CHECK and THINK: How do your answers change if the object is placed on the right side of the lens? FIGURE P38.43arrow_forwardYou view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye should you hold the magnifying glass to obtain a magnification of 10 ?arrow_forward
- An observer to the right of the mirror-lens combination shown in Figure P36.89 (not to scale) sees two real images that are the same size and in the same location. One image is upright, and the other is inverted. Both images are 1.50 times larger than the object. The lens has a focal length of 10.0 cm. The lens and mirror are separated by 40.0 cm. Determine the focal length of the mirror.arrow_forwardTwo converging lenses having focal lengths of f1 = 10.0 cm and f2 = 20.0 cm are placed a distance d = 50.0 cm apart as shown in Figure P35.48. The image due to light passing through both lenses is to be located between the lenses at the position x = 31.0 cm indicated. (a) At what value of p should the object be positioned to the left of the first lens? (b) What is the magnification of the final image? (c) Is the final image upright or inverted? (d) Is the final image real or virtual?arrow_forwardA man inside a spherical diving bell watches a fish through a window in the bell, as in Figure P23.26. If the diving bell has radius R = 1.75 m and the fish is a distance p = 1 00 m from the window, calculate (a) the image distance and (b) the magnification. Neglect the thickness of the window. Figure P23.26arrow_forward
- Au object of height 3.0 cm is placed at 25 cm in front of a diverging lens of focal length 20 cm. Behind the diverging lens, there is a converging lens of focal length 20 cm. The distance between the lenses is 5.0 cm. Fluid the location and size of the final image.arrow_forwardTwo converging lenses having focal length of f1 = 10.0 cm and f2 = 20.0 cm are placed d = 50.0 cm apart, as shown in Figure P23.44. The final image is to be located between the lenses, at the position x = 31.0 cm indicated. (a) How far to the left of the first lens should the object be positioned? (b) What is the overall magnification of the system? (c) Is the final image uptight or inserted? Figure P23.44arrow_forwardTwo thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY