
Principles of Biology
2nd Edition
ISBN: 9781259875120
Author: Robert Brooker, Eric P. Widmaier Dr., Linda Graham Dr. Ph.D., Peter Stiling Dr. Ph.D.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 26.7, Problem 2TYK
Summary Introduction
Introduction:
The arthropods constitute perhaps the most successful phylum on Earth. About three- quarters of all described living species present on Earth are arthropods, and scientists have estimated they are also numerically common, with an estimated 1018 billion individual organisms. The huge success of the arthropods, in terms of their sheer numbers and diversity, is related to features that permit these animals to live in all the major biomes on Earth, from the poles to the tropics and from marine and freshwater habitats to dry land. Such features include an exoskeleton, segmentation, and jointed appendages.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I want to be a super nutrition guy what u guys like recommend me
Please finish the chart at the bottom. Some of the answers have been filled in.
9. Aerobic respiration of one lipid molecule. The lipid is composed of one glycerol molecule connected to two
fatty acid tails. One fatty acid is 12 carbons long and the other fatty acid is 18 carbons long in the figure
below. Use the information below to determine how much ATP will be produced from the glycerol part of
the lipid. Then, in part B, determine how much ATP is produced from the 2 fatty acids of the lipid. Finally
put the NADH and ATP yields together from the glycerol and fatty acids (part A and B) to determine your
total number of ATP produced per lipid. Assume no other carbon source is available.
18 carbons
fatty acids
12 carbons
9
glycerol
A. Glycerol is broken down to glyceraldehyde 3-phosphate, a glycolysis intermediate via the following
pathway shown in the figure below. Notice this process costs one ATP but generates one FADH2. Continue
generating ATP with glyceraldehyde-3-phosphate using the standard pathway and aerobic respiration.
glycerol
glycerol-3-
phosphate…
Chapter 26 Solutions
Principles of Biology
Ch. 26.1 - Prob. 1TYKCh. 26.2 - Prob. 1BCCh. 26.2 - Prob. 1CCCh. 26.2 - What are the mam members of the Ecdysozoa?Ch. 26.2 - In protostomes the blastopore becomes the mouth....Ch. 26.2 - In triploblastic animals, the inner lining of the...Ch. 26.2 - Pseudocoelomates lack a fluid-filled cavity. have...Ch. 26.3 - Prob. 1TYKCh. 26.4 - Prob. 1CCCh. 26.4 - Prob. 1TYK
Ch. 26.4 - Prob. 2TYKCh. 26.5 - Prob. 1CCCh. 26.5 - Prob. 1TYKCh. 26.6 - Prob. 1CCCh. 26.6 - Prob. 2CCCh. 26.6 - Prob. 1BCCh. 26.6 - What are some of the advantages of segmentation?Ch. 26.6 - Platyhelminthes possess a lophophore. a coelom....Ch. 26.6 - Prob. 2TYKCh. 26.6 - Prob. 3TYKCh. 26.7 - Prob. 1CCCh. 26.7 - Prob. 2CCCh. 26.7 - Prob. 3CCCh. 26.7 - Prob. 1BCCh. 26.7 - Prob. 1TYKCh. 26.7 - Prob. 2TYKCh. 26.7 - Prob. 3TYKCh. 26.8 - Echinoderms and chordates are both deuterostomes....Ch. 26.8 - Prob. 1BCCh. 26.8 - Prob. 1TYKCh. 26.8 - Prob. 2TYKCh. 26.8 - Prob. 3TYKCh. 26 - Prob. 1TYCh. 26 - Prob. 2TYCh. 26 - Prob. 3TYCh. 26 - Prob. 4TYCh. 26 - Prob. 5TYCh. 26 - Prob. 6TYCh. 26 - Prob. 7TYCh. 26 - Prob. 8TYCh. 26 - A defining feature of the Ecdysozoa is a segmented...Ch. 26 - Incomplete metamorphosis is characterized by...Ch. 26 - Prob. 1CCQCh. 26 - Compare and contrast the five main feeding types...Ch. 26 - Prob. 3CCQCh. 26 - Prob. 1CBQCh. 26 - Prob. 2CBQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- Normal dive (for diving humans) normal breathing dive normal breathing Oz level CO2 level urgent need to breathe Oz blackout zone high CO2 triggers breathing 6. This diagram shows rates of oxygen depletion and carbon dioxide accumulation in the blood in relation to the levels needed to maintain consciousness and trigger the urgent need to breathe in diving humans. How might the location and slope of the O₂ line differ for diving marine mammals such as whales and dolphins? • How might the location and slope of the CO₂ line differ for diving marine mammals such as whales and dolphins? • • Draw in predicted lines for O2 and CO2, based on your reasoning above. How might the location of the Urgent Need to Breathe line and the O2 Blackout Zone line differ for diving marine mammals? What physiological mechanisms account for each of these differences, resulting in the ability of marine mammals to stay submerged for long periods of time?arrow_forwardforaging/diet type teeth tongue stomach intestines cecum Insectivory numerous, spiky, incisors procumbentExample: moleExample: shrew -- simple short mostly lacking Myrmecophagy absent or reduced in numbers, peg-likeExample: tamandua anteater extremely long simple, often roughened short small or lacking Terrestrial carnivory sharp incisors; long, conical canines; often carnassial cheek teeth; may have crushing molarsExample: dog -- simple short small Aquatic carnivory homodont, spiky, numerousExample: common dolphin -- simple or multichambered (cetaceans only) variable small or absent Sanguinivory very sharp upper incisors; reduced cheek teethExample: vampire bat grooved tubular, highly extensible long small or lacking Herbivory (except nectivores) incisors robust or absent; canines reduced or absent; diastema; cheek teeth enlarged with complex occlusal surfacesExample: beaver -- simple (hindgut fermenters) or multichambered (ruminants) long large Filter feeding none…arrow_forward3. Shown below is the dental formula and digestive tract anatomy of three mammalian species (A, B, and C). What kind of diet would you expect each species to have? Support your answers with what you can infer from the dental formula and what you can see in the diagram. Broadly speaking, what accounts for the differences? Species A 3/3, 1/1, 4/4, 3/3 པར『ན་ cm 30 Species B 4/3, 1/1, 2/2, 4/4 cm 10 Species C 0/4, 0/0,3/3, 3/3 020arrow_forward
- 3. Shown below is the dental formula and digestive tract anatomy of three mammalian species (A, B, and C). What kind of diet would you expect each species to have? Support your answers with what you can infer from the dental formula and what you can see in the diagram. Broadly speaking, what accounts for the differences? Species A 3/3, 1/1, 4/4, 3/3 cm 30 Species B 0/4, 0/0, 3/3, 3/3 cm 10 Species C 4/3, 1/1, 2/2, 4/4 E 0 cm 20 AILarrow_forwardNormal dive (for diving humans) normal breathing dive normal breathing Oz level CO₂ level urgent need to breathe Oz blackout zone high CO₂ triggers breathing 6. This diagram shows rates of oxygen depletion and carbon dioxide accumulation in the blood in relation to the levels needed to maintain consciousness and trigger the urgent need to breathe in diving humans. • How might the location and slope of the O2 line differ for diving marine mammals such as whales and dolphins? • How might the location and slope of the CO2 line differ for diving marine mammals such as whales and dolphins? • • Draw in predicted lines for O2 and CO2, based on your reasoning above. How might the location of the Urgent Need to Breathe line and the O2 Blackout Zone line differ for diving marine mammals? What physiological mechanisms account for each of these differences, resulting in the ability of marine mammals to stay submerged for long periods of time?arrow_forwardHow much ATP will be produced during the following metabolic scenario: Aerobic respiration of a 5mM lipid solution that is made up of one glycerol and an 8-carbon fatty acid and 12-carbon fatty acid. Recall that when glycerol breaks down to Glyceraldehyde-3-phosphate it costs one ATP but your get an extra FADH2. Every two carbons of a fatty acid break down to one acetyl-CoA. Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forward
- If a bacterium using aerobic respiration was to degrade one small protein molecule into 8 molecules of pyruvic acid, how many ATP would that cell make? Assume there is no other carbon source. Units cannot be entered in this style of question but the units of your answer should be in molecules of ATP.arrow_forwardIf a bacterium using aerobic respiration was to degrade a 30 mM solution of citric acid, how many ATP would that cell make? Assume no other carbon source is available. Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forwardHow much ATP will be produced during the following metabolic scenario: Aerobic respiration of a 5mM lipid solution that is made up of one glycerol and an 8-carbon fatty acid and 12-carbon fatty acid. Recall that when glycerol breaks down to Glyceraldehyde-3-phosphate it costs one ATP but your get an extra FADH2. Every two carbons of a fatty acid break down to one acetyl-CoA. (pathways will be provided on the exam) Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forward
- When beta-lactamase was isolated from Staphylcoccus aureus and treated with a phosphorylating agent, only the active site, serine was phosphorylated. Additionally, the serine was found to constitute 0.35% (by weight) of this beta-lactamase enzyme. Using this, calculate the molecular weight of this enzyme and estimate the number of amino acids present in the polypeptide.arrow_forwardBased on your results from the Mannitol Salt Agar (MSA) media, which of your bacteria were mannitol fermenters and which were not mannitol fermenters?arrow_forwardhelp tutor pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax
- Biology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning

Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning

Concepts of Biology
Biology
ISBN:9781938168116
Author:Samantha Fowler, Rebecca Roush, James Wise
Publisher:OpenStax College

Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax


Biology: The Unity and Diversity of Life (MindTap...
Biology
ISBN:9781305073951
Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa Starr
Publisher:Cengage Learning

Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning
Excretory System; Author: Amoeba Sisters;https://www.youtube.com/watch?v=q5qaGHfdmYM;License: Standard youtube license