
Concept explainers
1. Three objects are at rest in three beakers of water as shown.
- Compare the mass, volume, and density of the objects to the mass, volume, and density of the displaced water. Explain your reasoning in each case.

The comparison of mass, volume and density of the object with the displaced water.
Explanation of Solution
Given:
Three objects are at rest in three beakers of water as shown:
FormulaUsed:
Use Archimedes principle which is expressed as follows:
Here, the buoyant force is
Calculation:
For Object 1
Free body diagram of the 1st object is shown below:
As the object floats on the top of the surface, the displaced volume must be less than the volume of the object. Thus,
As the body is floating on the top surface, then the weight of the body is equal to the buoyant force. Thus, for equilibrium,
Thus, the mass of the object is equal to the mass of the displaced water.
For density, apply summation of force in the vertical direction as follows:
As the
For Object 2, Free body diagram of the 2nd object is shown below:
As the object floats inside the water, the displaced volume must be equal to the volume of the object. Thus,
As the body is floating inside the water then the weight of the body is equal to the buoyant force. Thus, for equilibrium,
Thus, the mass of the object is equal to the mass of the displaced water.
For density apply summation of force in the vertical direction as follows:
Thus, the density of the object must be equal to the density of water.
For Object 3,
Free body diagram of the 3rd object is shown below:
The displaced volume must be equal to the volume of the object as it is kept inside the tank completely. Thus,
As the body is not floating inside the water, then the weight of the body is more than the buoyant force. Thus, for equilibrium,
Thus, the mass of the object is more than the mass of the displaced water.
For density, apply summation of force in the vertical direction as follows:
Thus, the density of object must be more thanthe density of water.
Conclusion:
For object 1,
For object 2,
For object 3,
Want to see more full solutions like this?
Chapter 26 Solutions
Tutorials in Introductory Physics
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Human Biology: Concepts and Current Issues (8th Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Applications and Investigations in Earth Science (9th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- I need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could bearrow_forwardQuestion 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forwardE1 R₁ w 0.50 20 Ω 12 R₁₂ ww ΒΩ R₂ 60 E3 C RA w 15 Ω E2 0.25 E4 0.75 Ω 0.5 Ωarrow_forward
- What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





