Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 96GP
Predic/Calculate A film of oil with an index of refraction of t 48 and a thickness of 1 50 cm floats on a pool of water as shown in Figure 26-74 A beam of light is incident on the oil at an angle of 60.0° to the vertical, (a) Find the angle 9 the light bean makes with the vertical as t travels through the water (b) How does your answer to pan (a) depend on the thickness of the oil film? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 26 Solutions
Physics (5th Edition)
Ch. 26.1 - A ray of light reflects from a horizontal flat...Ch. 26.2 - A meterstick is placed 40 cm in front of a plane...Ch. 26.3 - Rank the following spherical mirrors in order of...Ch. 26.4 - A spherical mirror with an object at the distance...Ch. 26.5 - (a) As a beam of light passes from flint glass to...Ch. 26.6 - The lenses shown in Figure 26-49 have objects that...Ch. 26.7 - An object at the distance do = 15 cm from a lens...Ch. 26.8 - Referring to Figure 26-53, do you expect the index...Ch. 26 - Two plane mirrors meet at right angles at the...Ch. 26 - Two plane mirrors meet at right angles at the...
Ch. 26 - What is the radius of curvature of a plane mirror?...Ch. 26 - Dish receivers for satellite TV always use the...Ch. 26 - Suppose you would like to start a fire by focusing...Ch. 26 - Prob. 6CQCh. 26 - A swimmer at point 8 in Figure 26-55 needs help...Ch. 26 - When you observe a mirage on a hot day, what are...Ch. 26 - Sitting on a deserted beach one evening, you watch...Ch. 26 - The Disappearing Eyedropper The photograph in...Ch. 26 - The Invisible Man In the H. G. Wells novel The...Ch. 26 - Whats the Secret? The top of Figure 26-57 shows...Ch. 26 - A laser beam is reflected by a plane mirror. It is...Ch. 26 - The angle between the Sun and a rescue aircraft is...Ch. 26 - The reflecting surfaces of two mirrors form a...Ch. 26 - A ray of light reflects from a plane mirror with...Ch. 26 - Predict/Calculate A small vertical mirror hangs on...Ch. 26 - Sunlight enters a room at an angle of 32 above the...Ch. 26 - You stand 1.50 m in front of a wall and gaze...Ch. 26 - Predict/Calculate Standing 2.3 m in front of a...Ch. 26 - How many times does the light beam shown in Figure...Ch. 26 - If you view a clock in a mirror as in Figure...Ch. 26 - A 13.5-foot-long, nearsighted python is stretched...Ch. 26 - (a) How rapidly does the distance between you and...Ch. 26 - You are 1.8 m tall and stand 2.8 m from a plane...Ch. 26 - The rear window in a car is approximately a...Ch. 26 - Predict/Calculate You hold a small plane mirror...Ch. 26 - Prob. 16PCECh. 26 - Astronomers often use large mirrors in their...Ch. 26 - A section of a sphere has a radius of curvature of...Ch. 26 - A mirrored-glass gazing globe in a garden is 31.9...Ch. 26 - Sunlight reflects from a concave piece of broken...Ch. 26 - You hold a shiny tablespoon at aims length and...Ch. 26 - You hold a shiny tablespoon at arms length and...Ch. 26 - An object is placed to the left of a concave...Ch. 26 - An object is placed to the left of a convex...Ch. 26 - A small object is located 36.0 cm in front of a...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - Find the location and magnification of the image...Ch. 26 - During a daytime football game you notice that a...Ch. 26 - A convex mirror on the passenger side of a car...Ch. 26 - Predict/Calculate A magician wishes to create the...Ch. 26 - A person 1.8 m tall stands 0.86 m from a...Ch. 26 - Shaving/makeup mirrors typically have one flat and...Ch. 26 - The Hale Telescope The 200-inch-diameter concave...Ch. 26 - A concave mirror produces a virtual image that is...Ch. 26 - A concave mirror produces a real image that is...Ch. 26 - The virtual image produced by a convex mirror is...Ch. 26 - You view a nearby tree in a concave mirror. The...Ch. 26 - A shaving/makeup mirror produces an erect image...Ch. 26 - A concave mirror with a focal length of 36 cm...Ch. 26 - Predict/Explain When a ray of light enters a glass...Ch. 26 - Samurai Fishing A humorous scene in Akira...Ch. 26 - Prob. 44PCECh. 26 - Predict/Explain A kitchen has twin side-by-side...Ch. 26 - Light travels a distance of 0.902 m in 4.00 ns in...Ch. 26 - Prob. 47PCECh. 26 - The angle of refraction of a ray of light...Ch. 26 - Ptolemys Optics One of the many works published by...Ch. 26 - A submerged scuba diver looks up toward the calm...Ch. 26 - Prob. 51PCECh. 26 - Light is refracted as it travels from a point A in...Ch. 26 - You have a semicircular disk of glass with an...Ch. 26 - The observer in Figure 26-65 is positioned so that...Ch. 26 - A coin is lying at the bottom of a pool of water...Ch. 26 - Prob. 56PCECh. 26 - Prob. 57PCECh. 26 - Predict/Calculate Suppose the glass paperweight in...Ch. 26 - While studying physics at the library late one...Ch. 26 - A horizontal beam of light enters a 45 90 45 prism...Ch. 26 - A laser team enters one of the sloping faces of...Ch. 26 - (a) Use a ray diagram to determine the approximate...Ch. 26 - (a) Use a ray diagram to determine the approximate...Ch. 26 - An object is a distance ft2 from a convex lens (a)...Ch. 26 - An object is a distance 2f from a convex lens (a)...Ch. 26 - Two lenses that are 35 cm apart are used to form...Ch. 26 - Two lenses that are 35 cm apart are used to form...Ch. 26 - A convex lens is held over a piece of paper...Ch. 26 - A concave lens has a focal length of 39cm. Find...Ch. 26 - When an object is located 38 cm to the left of a...Ch. 26 - An object with a height of 2 54 cm is placed 36 3...Ch. 26 - A lens for a digital camera has a focal length...Ch. 26 - Predict/Calculate An object is located to the left...Ch. 26 - Predict/Calculate You have two lenses at your...Ch. 26 - (a) Determine the distance from lens 1 to the...Ch. 26 - (a) Determine the distance from lens 1 to the...Ch. 26 - Predict/Calculate An object is located to the left...Ch. 26 - BIO Predict/Calculate Albert is nearsighted and...Ch. 26 - A small insect viewed through a convex lens is 1.8...Ch. 26 - Predict/Calculate A friend tells you that when he...Ch. 26 - Predict/Calculate A friend tells you that when she...Ch. 26 - Prob. 82PCECh. 26 - Predict/Explain You take a picture of a rainbow...Ch. 26 - The index of refraction for red light in a certain...Ch. 26 - A horizontal incident beam consisting of white...Ch. 26 - Prob. 86PCECh. 26 - CE Jurassic Park A T. rex chases the heroes of...Ch. 26 - CE Predict/Explain If a lens is immersed in water...Ch. 26 - CE Predict/Explain A glass slab surrounded by air...Ch. 26 - CE Inverse Lenses Suppose we mold a hollow piece...Ch. 26 - Standing 2 5 m in front of a small vertical mirror...Ch. 26 - Prob. 92GPCh. 26 - (a) Find the two locations where an object can be...Ch. 26 - A convex mirror with a focal length of -85 is used...Ch. 26 - Prob. 95GPCh. 26 - Predic/Calculate A film of oil with an index of...Ch. 26 - Figure 26-75 shows a ray of light entering one end...Ch. 26 - Suppose the fiber depicted in Figure 26-75 has an...Ch. 26 - An arrow 2.00 cm long is located 75.0 cm from a...Ch. 26 - A convex lens with f1 = 200 cm is mounted 40.0 cm...Ch. 26 - Two thin lenses with focal lengths f1 and f2, are...Ch. 26 - When an object is placed a distance d0 in front of...Ch. 26 - A Slab of Glass Give a symbolic expression for the...Ch. 26 - Least Time A beam of light propagates from point A...Ch. 26 - The ray of light shown in Figure 26-79 passes from...Ch. 26 - Predict/Calculate A beam of light enters the...Ch. 26 - A converging lens with a focal length in air of f...Ch. 26 - A diverging lens with f = 12.5 cm is made from...Ch. 26 - Calculate the focal length of a lens in water,...Ch. 26 - Suppose a lens is made from fused quartz (glass),...Ch. 26 - Referring to Example 26-5 Suppose the radius of...Ch. 26 - Predict/Calculate Referring to Example 26-5 object...Ch. 26 - Referring to Example 26-18 (a) What object...Ch. 26 - Predict/Calculate Referring to Example 26-18...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. CAUTION Why is genetic drift aptly named?
a. It causes allele frequencies to drift up or down randomly.
b. I...
Biological Science (6th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
Researchers cross a corn plant that is pure - breeding forthe dominant traits colored aleurone (C1), full kerne...
Genetic Analysis: An Integrated Approach (3rd Edition)
Sulfuric acid can dissolve aluminum metal according to the reaction: 2Al(s)+3H2SO4(aq)Al2(SO4)+3H2(g) Suppose y...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A ray of 610 nm light goes from air into fused quartz at an incident angle of 55.0°. At what incident angle must 470 nm light enter flint glass to have the same angle of refraction?arrow_forwardAt the end of Example 17, it was stated that the intensity of polarized light is reduced to 90.0% of its original value by passing through a polarizing filter with its axis at an angle of 18.4° to the direction of polarization. Verify this statement.arrow_forwardA ray of 610-nm light goes from air into fused quartz at an incident angle of 55.0. At what incident angle must 470 nm light enter flint glass to have the same angle of refraction?arrow_forward
- A scuba diver training in a pool looks at his instructor as shown in Figure 25.53. What angle does the ray from the instructor’s face make with the perpendicular to the water at the point where the ray enters? The angle between the ray in the water and the perpendicular to the water is 25.0°. Figure 25.53 A scuba diver in a pool and his trainer look at each other.arrow_forwardIf b is Brewster's angle for light reflected from the top of an interface between two substances, and b is Brewster's angle for light reflected from below, prove that b+b=90.0.arrow_forwardSuppose you are using total internal reflection to make an efficient corner reflector. If there is air outside and the incident angle is 45.0°, what must be the minimum index of refraction of the material from which the reflector is made?arrow_forward
- Consider a common mirage formed by superheated air immediately above a roadway. A truck driver whose eyes are 2.00 m above the road, where n = 1.000 293, looks forward. She perceives the illusion of a patch of water ahead on the road. The road appears wet only beyond a point on the road at which her line of sight makes an angle of 1.20 below the horizontal. Find the index of refraction of the air immediately above the road surface.arrow_forwardA narrow beam of white light enters a prism made of crown glass at a 45.0° incident angle, as shown in Figure 25.57. At what angles, R and V, do the red (660 nm) and violet (410 nm) components of the light emerge from the prism? Figure 25.57 This prism will disperse the while light into a rainbow of colors. The incident angle is 45.0°, and the angles at which the red and violet light emerge are R and V.arrow_forwardA film of oil on water will appear dark when it is very thin, because the path length difference becomes small compared with the wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is less than one-fourth the wavelength, what is the thickest the oil can be and appear dark at all visible wavelengths? Oil has an index of refraction of 1.40.arrow_forward
- A light ray navels from vacuum into a slab of material with index of refraction n1 at incident angle with respect to the surface. It subsequently passes into a second slab of material with index of refraction n2 before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle that the outgoing light makes with the normal? (a) (b) (c) = (d) The angle depends on the magnitudes of n1 and n2. (e) The angle depends on the wavelength of the light.arrow_forwardA film of oil on water will appear dark when it is very thin, because the path length difference becomes small compared with the wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is less than one-fourth the wavelength, what is the thickest the oil can be and appear dark at all visible wavelengths? Oil has an index of refraction of 1.40.arrow_forwardFigure 25.54 shows a ray of light passing from one medium into a second and then a third. Show that 3 is the same as it would be if the second medium were not present (provided total internal reflection does not occur). Figure 25.54 A ray of light passes from one medium to a third by traveling through a second. The final direction is the same as if the second medium were not present, but the ray is displaced by x (Shawn exaggerated).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY