Your roommate is sold on “magnet therapy,” a sham treatment using small bar magnets attached to the body. You skeptically ask your roommate how this is supposed to work. He mumbles something about the Hall effect speeding blood flow. In reply, you estimate the Hall potential associated with typical blood parameters in the 100-G field of a bar magnet: red blood cells carrying 2-pC charge in a 12-cm/s flow through a 3.0-mm-diameter blood vessel containing 5 billion red blood cells per mL. To show that the Hall potential is negligible, you compare your estimate with the tens of mV typical of bioelectric activity. How do the two values compare?
Your roommate is sold on “magnet therapy,” a sham treatment using small bar magnets attached to the body. You skeptically ask your roommate how this is supposed to work. He mumbles something about the Hall effect speeding blood flow. In reply, you estimate the Hall potential associated with typical blood parameters in the 100-G field of a bar magnet: red blood cells carrying 2-pC charge in a 12-cm/s flow through a 3.0-mm-diameter blood vessel containing 5 billion red blood cells per mL. To show that the Hall potential is negligible, you compare your estimate with the tens of mV typical of bioelectric activity. How do the two values compare?
Your roommate is sold on “magnet therapy,” a sham treatment using small bar magnets attached to the body. You skeptically ask your roommate how this is supposed to work. He mumbles something about the Hall effect speeding blood flow. In reply, you estimate the Hall potential associated with typical blood parameters in the 100-G field of a bar magnet: red blood cells carrying 2-pC charge in a 12-cm/s flow through a 3.0-mm-diameter blood vessel containing 5 billion red blood cells per mL. To show that the Hall potential is negligible, you compare your estimate with the tens of mV typical of bioelectric activity. How do the two values compare?
Imagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.