Essential University Physics
Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 26, Problem 51P

Show that the orbital radius of a charged particle moving at right angles to a magnetic field B can be written r = 2 K m / q B , where K is the kinetic energy in joules, m the particle’s mass, and q its charge.

Blurred answer
Students have asked these similar questions
There are N = 2400 electrons moving in one dimension and they meet at the origin of coordinates with a potential step of height Vo = 2,6eV. If each of the electrons have energy E = 3,1eV. Find the quantity of electrons that pass to the other region and the kinetic energy that they would carry.
The density of a star measured from the center of a star is equal to Z. a is constant. find the gravitational potential and g as a function of r.
In this problem, we will try to understand why chemical reactions cannot power the Sun, but nuclear reactions can. The energy scale of chemical reactions is a few eV, where eV is a unit of energy called an electron volt. 1 eV = 1.602 x 10-19 J.  A typical chemical reaction involves an energy change of ~0.1 to 10 eV. In contrast, a nuclear reaction typically involves a change in energy of order a few MeV (mega electron volts; a factor of a million larger). Suppose that the Sun has a constant luminosity throughout its life, equal to its current luminosity of L⊙=3.827×1026J/s . Suppose also that the Sun is made entirely of hydrogen (or just protons, since the mass of the electron is about 2000 times smaller and is negligible in comparison). If every pair of two protons in the Sun undergo a one-time chemical reaction that nets ~1 eV of energy, how long would it take (in years) to expend all the available chemical energy?

Chapter 26 Solutions

Essential University Physics

Ch. 26 - Two identical particles carrying equal charge are...Ch. 26 - Prob. 5FTDCh. 26 - Do currents in the same direction attract or...Ch. 26 - If a current is passed through an unstretched...Ch. 26 - Figure 26.38 shows some magnetic field lines...Ch. 26 - Prob. 9FTDCh. 26 - Prob. 10FTDCh. 26 - Find (a) the minimum magnetic field needed to...Ch. 26 - An electron moving at right angles to a 0.10-T...Ch. 26 - Find the magnitude of the magnetic force on a...Ch. 26 - The magnitude of Earths magnetic field is about...Ch. 26 - A velocity selector uses a 60-mT magnetic field...Ch. 26 - Prob. 16ECh. 26 - How long: does it take an electron to complete a...Ch. 26 - Radio astronomers detect electromagnetic radiation...Ch. 26 - Prob. 19ECh. 26 - Two protons, moving in a plane perpendicular to a...Ch. 26 - Find the magnitude of the force on a 65.5-cm-long...Ch. 26 - A wire carrying 15 A makes a 25 angle with a...Ch. 26 - In an experimental nuclear fusion reactor, plans...Ch. 26 - A wire with mass per unit length 75 g/m runs...Ch. 26 - A wire carries 6.71 A. You form it into a...Ch. 26 - A single-turn wire loop is 2.0 cm in diameter and...Ch. 26 - A 2.2-m-long wire carrying 3.5 A is wound into a...Ch. 26 - Whats the current in a long wire if the magnetic...Ch. 26 - In standard household wiring, parallel wires about...Ch. 26 - Earths magnetic dipole moment is 8.01022 Am2. Find...Ch. 26 - A single-turn square wire loop 18.0 cm on a side...Ch. 26 - An electric motor contains a 250-turn circular...Ch. 26 - The line integral of the magnetic field on a...Ch. 26 - The magnetic field shown in Fig. 26.39 has uniform...Ch. 26 - Number 12 gauge wire, commonly used in household...Ch. 26 - Prob. 36ECh. 26 - A superconducting solenoid has 3300 turns per...Ch. 26 - Example 26.2: Chlorine is an unusual element in...Ch. 26 - Example 26.2: You’re trying to measure arsenic...Ch. 26 - Example 26.2: A beam of elections is initially...Ch. 26 - Example26.2: The mass spectrometer described in...Ch. 26 - Example 26.7: A long, straight wire 9.27 mm in...Ch. 26 - Example 26.7: Niobium-tin, a commonly used...Ch. 26 - Prob. 44ECh. 26 - Example 26.7: A coaxial cable like the one...Ch. 26 - Prob. 46PCh. 26 - Jupiter has the strongest magnetic field in our...Ch. 26 - A proton moving with velocity v1 = 3.6 104 m/s...Ch. 26 - A simplified model of Earths magnetic field has it...Ch. 26 - Before the advent of today’s flat-screen...Ch. 26 - Show that the orbital radius of a charged particle...Ch. 26 - Prob. 52PCh. 26 - Prob. 53PCh. 26 - Prob. 54PCh. 26 - Youre designing a prosthetic ankle that includes a...Ch. 26 - A 20-cm-long conducting rod with mass 18 g is...Ch. 26 - Prob. 57PCh. 26 - Nuclear magnetic resonance (NMR) is a technique...Ch. 26 - A wire carrying 1.5 A passes through a 48-mT...Ch. 26 - Your smartphone contains a magnetometer that uses...Ch. 26 - A single piece of wire carrying current I is bent...Ch. 26 - You and a friend get lost while hiking, so your...Ch. 26 - Part of a long wire carrying current I is bent...Ch. 26 - A long, straight wire carries a 25-A current. A...Ch. 26 - A long conducting rod of radius R carries a...Ch. 26 - A long, hollow conducting pipe of radius R carries...Ch. 26 - You have 10 m of 0.50-mm-diameter copper wire and...Ch. 26 - Prob. 69PCh. 26 - The largest lightning strikes have peak currents...Ch. 26 - Prob. 71PCh. 26 - Prob. 72PCh. 26 - Prob. 73PCh. 26 - A circular wire loop of radius 15 cm and...Ch. 26 - Prob. 75PCh. 26 - A long, hollow conducting pipe of radius R and...Ch. 26 - A solid conducting wire of radius R runs parallel...Ch. 26 - A disk of radius a carries uniform surface charge...Ch. 26 - Youre developing a system to orient an orbiting...Ch. 26 - Prob. 80PCh. 26 - Prob. 81PCh. 26 - Find an expression for the magnetic field at the...Ch. 26 - Prob. 83PCh. 26 - A Helmholtz coil is a pair of identical circular...Ch. 26 - Prob. 85PCh. 26 - Derive Equation 26.20 by considering the current...Ch. 26 - Your roommate is sold on magnet therapy, a sham...Ch. 26 - A toroid is a solenoid-like coil bent into a...Ch. 26 - A toroid is a solenoid-like coil bent into a...Ch. 26 - A toroid is a solenoid-like coil bent into a...Ch. 26 - A toroid is a solenoid-like coil bent into a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY