EBK DIFFERENTIAL EQUATIONS
5th Edition
ISBN: 9780321974235
Author: Calvis
Publisher: PEARSON CUSTOM PUB.(CONSIGNMENT)
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.6, Problem 3P
Program Plan Intro
Program Description: Purpose of problem is to construct a table for the approximation solution and the actual solution of
Summary Introduction:
Purpose will use Runge Kutta’s method to construct the table of the approximation solution and the actual solution
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
QUESTION
An observation indicates that the frog population Q(t) in a small pond is 25 initially and
satisfies the logistic equation
Q(t)' = 0.0225Q(t) – 0.0003Q(t)?,
(with t in months.)
a. Apply Modified Euler's method together with any computer program to approximate the
solution for 10 years. Use the step size ofh = 1 and then with h = 0.5
b. Find out the percentage of the limiting population of 75 frogs has been attained after 5
years and after 10 years
c. Summarize your findings in (b)
Using MATLAB, develop a computer program for the finite difference solution with general
θ scheme for the 1D consolidation of a uniform layer of soil. Compare the results for θ=0, 0.5, 2/3 and 1.0 for α=0.49 and α=0.51 against the analytical solution of Terzaghi’s equation for T=0.5.
Apply the program to both cases of double draining layer and single draining layer.
You solve a non-singular system of 1,000 linear equations with 1,000 unknowns. Your code uses the Gauss-Jordan
algorithm with partial pivoting using double precision numbers and arithmetics. Why would the 2-norm of the residual
of your solution not be zero?
Chapter 2 Solutions
EBK DIFFERENTIAL EQUATIONS
Ch. 2.1 - Prob. 1PCh. 2.1 - Prob. 2PCh. 2.1 - Prob. 3PCh. 2.1 - Prob. 4PCh. 2.1 - Prob. 5PCh. 2.1 - Prob. 6PCh. 2.1 - Prob. 7PCh. 2.1 - Prob. 8PCh. 2.1 - Prob. 9PCh. 2.1 - Prob. 10P
Ch. 2.1 - Prob. 11PCh. 2.1 - Prob. 12PCh. 2.1 - Prob. 13PCh. 2.1 - Prob. 14PCh. 2.1 - Prob. 15PCh. 2.1 - Prob. 16PCh. 2.1 - Prob. 17PCh. 2.1 - Prob. 18PCh. 2.1 - Prob. 19PCh. 2.1 - Prob. 20PCh. 2.1 - Prob. 21PCh. 2.1 - Suppose that at time t=0, half of a logistic...Ch. 2.1 - Prob. 23PCh. 2.1 - Prob. 24PCh. 2.1 - Prob. 25PCh. 2.1 - Prob. 26PCh. 2.1 - Prob. 27PCh. 2.1 - Prob. 28PCh. 2.1 - Prob. 29PCh. 2.1 - A tumor may be regarded as a population of...Ch. 2.1 - Prob. 31PCh. 2.1 - Prob. 32PCh. 2.1 - Prob. 33PCh. 2.1 - Prob. 34PCh. 2.1 - Prob. 35PCh. 2.1 - Prob. 36PCh. 2.1 - Prob. 37PCh. 2.1 - Fit the logistic equation to the actual U.S....Ch. 2.1 - Prob. 39PCh. 2.2 - Prob. 1PCh. 2.2 - Prob. 2PCh. 2.2 - Prob. 3PCh. 2.2 - Prob. 4PCh. 2.2 - Prob. 5PCh. 2.2 - Prob. 6PCh. 2.2 - Prob. 7PCh. 2.2 - Prob. 8PCh. 2.2 - Prob. 9PCh. 2.2 - Prob. 10PCh. 2.2 - Prob. 11PCh. 2.2 - Prob. 12PCh. 2.2 - Prob. 13PCh. 2.2 - Prob. 14PCh. 2.2 - Prob. 15PCh. 2.2 - Prob. 16PCh. 2.2 - Prob. 17PCh. 2.2 - Prob. 18PCh. 2.2 - Prob. 19PCh. 2.2 - Prob. 20PCh. 2.2 - Prob. 21PCh. 2.2 - Prob. 22PCh. 2.2 - Prob. 23PCh. 2.2 - Prob. 24PCh. 2.2 - Use the alternatives forms...Ch. 2.2 - Prob. 26PCh. 2.2 - Prob. 27PCh. 2.2 - Prob. 28PCh. 2.2 - Consider the two differentiable equation...Ch. 2.3 - The acceleration of a Maserati is proportional to...Ch. 2.3 - Prob. 2PCh. 2.3 - Prob. 3PCh. 2.3 - Prob. 4PCh. 2.3 - Prob. 5PCh. 2.3 - Prob. 6PCh. 2.3 - Prob. 7PCh. 2.3 - Prob. 8PCh. 2.3 - A motorboat weighs 32,000 lb and its motor...Ch. 2.3 - A woman bails out of an airplane at an altitude of...Ch. 2.3 - According to a newspaper account, a paratrooper...Ch. 2.3 - Prob. 12PCh. 2.3 - Prob. 13PCh. 2.3 - Prob. 14PCh. 2.3 - Prob. 15PCh. 2.3 - Prob. 16PCh. 2.3 - Prob. 17PCh. 2.3 - Prob. 18PCh. 2.3 - Prob. 19PCh. 2.3 - Prob. 20PCh. 2.3 - Prob. 21PCh. 2.3 - Suppose that =0.075 (in fps units, with g=32ft/s2...Ch. 2.3 - Prob. 23PCh. 2.3 - The mass of the sun is 329,320 times that of the...Ch. 2.3 - Prob. 25PCh. 2.3 - Suppose that you are stranded—your rocket engine...Ch. 2.3 - Prob. 27PCh. 2.3 - (a) Suppose that a body is dropped (0=0) from a...Ch. 2.3 - Prob. 29PCh. 2.3 - Prob. 30PCh. 2.4 - Prob. 1PCh. 2.4 - Prob. 2PCh. 2.4 - Prob. 3PCh. 2.4 - Prob. 4PCh. 2.4 - Prob. 5PCh. 2.4 - Prob. 6PCh. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - Prob. 9PCh. 2.4 - Prob. 10PCh. 2.4 - Prob. 11PCh. 2.4 - Prob. 12PCh. 2.4 - Prob. 13PCh. 2.4 - Prob. 14PCh. 2.4 - Prob. 15PCh. 2.4 - Prob. 16PCh. 2.4 - Prob. 17PCh. 2.4 - Prob. 18PCh. 2.4 - Prob. 19PCh. 2.4 - Prob. 20PCh. 2.4 - Prob. 21PCh. 2.4 - Prob. 22PCh. 2.4 - Prob. 23PCh. 2.4 - Prob. 24PCh. 2.4 - Prob. 25PCh. 2.4 - Prob. 26PCh. 2.4 - Prob. 27PCh. 2.4 - Prob. 28PCh. 2.4 - Prob. 29PCh. 2.4 - Prob. 30PCh. 2.4 - Prob. 31PCh. 2.5 - Prob. 1PCh. 2.5 - Prob. 2PCh. 2.5 - Prob. 3PCh. 2.5 - Prob. 4PCh. 2.5 - Prob. 5PCh. 2.5 - Prob. 6PCh. 2.5 - Prob. 7PCh. 2.5 - Prob. 8PCh. 2.5 - Prob. 9PCh. 2.5 - Prob. 10PCh. 2.5 - Prob. 11PCh. 2.5 - Prob. 12PCh. 2.5 - Prob. 13PCh. 2.5 - Prob. 14PCh. 2.5 - Prob. 15PCh. 2.5 - Prob. 16PCh. 2.5 - Prob. 17PCh. 2.5 - Prob. 18PCh. 2.5 - Prob. 19PCh. 2.5 - Prob. 20PCh. 2.5 - Prob. 21PCh. 2.5 - Prob. 22PCh. 2.5 - Prob. 23PCh. 2.5 - Prob. 24PCh. 2.5 - Prob. 25PCh. 2.5 - Prob. 26PCh. 2.5 - Prob. 27PCh. 2.5 - Prob. 28PCh. 2.5 - Prob. 29PCh. 2.5 - Prob. 30PCh. 2.6 - Prob. 1PCh. 2.6 - Prob. 2PCh. 2.6 - Prob. 3PCh. 2.6 - Prob. 4PCh. 2.6 - Prob. 5PCh. 2.6 - Prob. 6PCh. 2.6 - Prob. 7PCh. 2.6 - Prob. 8PCh. 2.6 - Prob. 9PCh. 2.6 - Prob. 10PCh. 2.6 - Prob. 11PCh. 2.6 - Prob. 12PCh. 2.6 - Prob. 13PCh. 2.6 - Prob. 14PCh. 2.6 - Prob. 15PCh. 2.6 - Prob. 16PCh. 2.6 - Prob. 17PCh. 2.6 - Prob. 18PCh. 2.6 - Prob. 19PCh. 2.6 - Prob. 20PCh. 2.6 - Prob. 21PCh. 2.6 - Prob. 22PCh. 2.6 - Prob. 23PCh. 2.6 - Prob. 24PCh. 2.6 - Prob. 25PCh. 2.6 - Prob. 26PCh. 2.6 - Prob. 27PCh. 2.6 - Prob. 28PCh. 2.6 - Prob. 29PCh. 2.6 - Prob. 30P
Knowledge Booster
Similar questions
- The finite difference method transforms the ordinary differential equation in a system of linear equations of the form with k=1,2,...,(n−1) , h=1/n, y0=0 and yn=5 . Knowing this, make n=5 and assemble the associated linear system. Then solve numerically using some iterative method and compare the numerical solution with the exact analytical solution y(x)=x^4+4x . So do the same for n=10 and comment on what you observed. code with python.arrow_forwardHow to apply the code for this question? What value to be inserted to run the code?arrow_forwardIf you indicate the exact real root of the nonlinear formula f(x )=x³+2x-5 to four decimal points, calculate each approximation 0, 1, 2, 3, 4 using the secant method in the interval [1,2]. All results are marked up to four decisces. thank youarrow_forward
- can i know what computer programmed that can be used?arrow_forwardUse the secant method to solve the nonlinear equation xsinx -1 = 0, where x is in radians, starting with the initial interval of [0,2]. Show the corresponding solution and the minimum amount of iterations required. Draw the graph of the function.arrow_forwardApply the Newton-Raphson method to approximate the root of the nonlinear equation x^4 - x - 10 = 0 Compute and presets the results of five iterates for each of the initial guesses x0=1, x0=2, x0=100. What are the observations?arrow_forward
- Use matlab In Problems 5-10 use a numerical solver and Euler's method to obtain a four-decimal approximation of the indicated value. First use h 5 0.1 and then use h 5 0.05. 8. y'=xy+ sqrt(y), y(0)=1, y(0.5) I tried this method, but it gives me errors "un recongnized function or variable at 'xy'. Error in live 5 and error in line 17 close all clear clc f=@(x,y) xy+sqrty; % Given ODE x0=0; xf=0.5; % Interals of x y0=1; % Intital condition h1-0.1; % Step Size 1 y1=euler (x0, yo, xf, h¹, f); fprintf('For h=0.1, y(0.5) - %.4f/n', y1(end)) y2=euler (x0, yo, xf, h2, f); fprintf('For h=0.05, y(0.5)=%.4f/n', y2(end)) function y=euler (x0, yo, xf, h, f) y(1)=y0; x-x0:h:xf; for i=1:length(x) -1 f1-f(x(i), y(i)); y(i+1)=y(i)+h*f1; %Euler's Update end endarrow_forwardIn your own words, please explain at least five drawbacks associated with the practise of using the direct method of solution in numerical analysis.arrow_forwardAn oscillating current in an electric circuit is described by i(t) = 9e cos(2rt) where t is in seconds. Use False Position Method to determine the value of t such that i=3.5. Plot the graph of the function to develop your initial guess. Terminate your computation when the approximate relative error falls below ɛs=10°. Give the results in a table.arrow_forward
- 2Runge-Kutta Order 4 (RK4) Method is a commonly used numerical solution method for ordinary differential equations of initial value problems. Please complete the following pseudo code and use geometric images to explain why the RK4 method has less error.arrow_forwardConsider a gas in a piston-cylinder device in which the temperature is held constant. As the volume of the device was changed, the pressure was mecas- ured. The volume and pressure values are reported in the following table: Volume, m Pressure, kPa, when I= 300 K 2494 1247 831 4 623 5 499 416 (a) Usc lincar interpolation to estimate the pressure when the volume is 3.8 m. (b) Usc cubic splinc interpolation to cstimate the pressure when the vol- ume is 3.8 m. (c) Usc lincar interpolation to cstimate the volume if the pressure is meas- ured to be 1000 kPa. (d) Usc cubic splinc interpolation to cstimate the volume if the pressure is mcasured to be 1000 kPa. 4.arrow_forwardUse Secant method to determine a root between x =1 and x= 3, of the simultaneous nonlinear equations. x² +(x-1)° +(y-2)° =14 x² +y² =9 Perform your calculations for 3 iterations.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr