EBK DIFFERENTIAL EQUATIONS
5th Edition
ISBN: 9780321974235
Author: Calvis
Publisher: PEARSON CUSTOM PUB.(CONSIGNMENT)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.5, Problem 26P
Program Plan Intro
Use the improved Euler’s method with step size h=0.1and h=0.05 to approximate upto five the solution for 10 years P-values of three decimal places the value of the solution at ten equally spaced points of the given interval. Print the result in tabular form with appropriate headings.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A simple pendulum of length L, has a
maximum angular displacement
e_max. At one point in its motion, its
kinetic energy is K = 3 J and its
potential energy is U = 4.2 J. When
the pendulum's angular velocity is
one-fourth its maximum value (0' =
%3D
O'_max/4), then its kinetic energy is:
QUESTION
An observation indicates that the frog population Q(t) in a small pond is 25 initially and
satisfies the logistic equation
Q(t)' = 0.0225Q(t) – 0.0003Q(t)?,
(with t in months.)
a. Apply Modified Euler's method together with any computer program to approximate the
solution for 10 years. Use the step size ofh = 1 and then with h = 0.5
b. Find out the percentage of the limiting population of 75 frogs has been attained after 5
years and after 10 years
c. Summarize your findings in (b)
A simple pendulum is formed of a rope of length L = 2.2 m and a bob of mass m.
%3D
When the pendulum makes an angle e
10° with the vertical, the speed of the
%3D
bob is 2 m/s. The angular speed, e', at the lowest position is equal to: (g = 10
m/s^2)
Chapter 2 Solutions
EBK DIFFERENTIAL EQUATIONS
Ch. 2.1 - Prob. 1PCh. 2.1 - Prob. 2PCh. 2.1 - Prob. 3PCh. 2.1 - Prob. 4PCh. 2.1 - Prob. 5PCh. 2.1 - Prob. 6PCh. 2.1 - Prob. 7PCh. 2.1 - Prob. 8PCh. 2.1 - Prob. 9PCh. 2.1 - Prob. 10P
Ch. 2.1 - Prob. 11PCh. 2.1 - Prob. 12PCh. 2.1 - Prob. 13PCh. 2.1 - Prob. 14PCh. 2.1 - Prob. 15PCh. 2.1 - Prob. 16PCh. 2.1 - Prob. 17PCh. 2.1 - Prob. 18PCh. 2.1 - Prob. 19PCh. 2.1 - Prob. 20PCh. 2.1 - Prob. 21PCh. 2.1 - Suppose that at time t=0, half of a logistic...Ch. 2.1 - Prob. 23PCh. 2.1 - Prob. 24PCh. 2.1 - Prob. 25PCh. 2.1 - Prob. 26PCh. 2.1 - Prob. 27PCh. 2.1 - Prob. 28PCh. 2.1 - Prob. 29PCh. 2.1 - A tumor may be regarded as a population of...Ch. 2.1 - Prob. 31PCh. 2.1 - Prob. 32PCh. 2.1 - Prob. 33PCh. 2.1 - Prob. 34PCh. 2.1 - Prob. 35PCh. 2.1 - Prob. 36PCh. 2.1 - Prob. 37PCh. 2.1 - Fit the logistic equation to the actual U.S....Ch. 2.1 - Prob. 39PCh. 2.2 - Prob. 1PCh. 2.2 - Prob. 2PCh. 2.2 - Prob. 3PCh. 2.2 - Prob. 4PCh. 2.2 - Prob. 5PCh. 2.2 - Prob. 6PCh. 2.2 - Prob. 7PCh. 2.2 - Prob. 8PCh. 2.2 - Prob. 9PCh. 2.2 - Prob. 10PCh. 2.2 - Prob. 11PCh. 2.2 - Prob. 12PCh. 2.2 - Prob. 13PCh. 2.2 - Prob. 14PCh. 2.2 - Prob. 15PCh. 2.2 - Prob. 16PCh. 2.2 - Prob. 17PCh. 2.2 - Prob. 18PCh. 2.2 - Prob. 19PCh. 2.2 - Prob. 20PCh. 2.2 - Prob. 21PCh. 2.2 - Prob. 22PCh. 2.2 - Prob. 23PCh. 2.2 - Prob. 24PCh. 2.2 - Use the alternatives forms...Ch. 2.2 - Prob. 26PCh. 2.2 - Prob. 27PCh. 2.2 - Prob. 28PCh. 2.2 - Consider the two differentiable equation...Ch. 2.3 - The acceleration of a Maserati is proportional to...Ch. 2.3 - Prob. 2PCh. 2.3 - Prob. 3PCh. 2.3 - Prob. 4PCh. 2.3 - Prob. 5PCh. 2.3 - Prob. 6PCh. 2.3 - Prob. 7PCh. 2.3 - Prob. 8PCh. 2.3 - A motorboat weighs 32,000 lb and its motor...Ch. 2.3 - A woman bails out of an airplane at an altitude of...Ch. 2.3 - According to a newspaper account, a paratrooper...Ch. 2.3 - Prob. 12PCh. 2.3 - Prob. 13PCh. 2.3 - Prob. 14PCh. 2.3 - Prob. 15PCh. 2.3 - Prob. 16PCh. 2.3 - Prob. 17PCh. 2.3 - Prob. 18PCh. 2.3 - Prob. 19PCh. 2.3 - Prob. 20PCh. 2.3 - Prob. 21PCh. 2.3 - Suppose that =0.075 (in fps units, with g=32ft/s2...Ch. 2.3 - Prob. 23PCh. 2.3 - The mass of the sun is 329,320 times that of the...Ch. 2.3 - Prob. 25PCh. 2.3 - Suppose that you are stranded—your rocket engine...Ch. 2.3 - Prob. 27PCh. 2.3 - (a) Suppose that a body is dropped (0=0) from a...Ch. 2.3 - Prob. 29PCh. 2.3 - Prob. 30PCh. 2.4 - Prob. 1PCh. 2.4 - Prob. 2PCh. 2.4 - Prob. 3PCh. 2.4 - Prob. 4PCh. 2.4 - Prob. 5PCh. 2.4 - Prob. 6PCh. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - Prob. 9PCh. 2.4 - Prob. 10PCh. 2.4 - Prob. 11PCh. 2.4 - Prob. 12PCh. 2.4 - Prob. 13PCh. 2.4 - Prob. 14PCh. 2.4 - Prob. 15PCh. 2.4 - Prob. 16PCh. 2.4 - Prob. 17PCh. 2.4 - Prob. 18PCh. 2.4 - Prob. 19PCh. 2.4 - Prob. 20PCh. 2.4 - Prob. 21PCh. 2.4 - Prob. 22PCh. 2.4 - Prob. 23PCh. 2.4 - Prob. 24PCh. 2.4 - Prob. 25PCh. 2.4 - Prob. 26PCh. 2.4 - Prob. 27PCh. 2.4 - Prob. 28PCh. 2.4 - Prob. 29PCh. 2.4 - Prob. 30PCh. 2.4 - Prob. 31PCh. 2.5 - Prob. 1PCh. 2.5 - Prob. 2PCh. 2.5 - Prob. 3PCh. 2.5 - Prob. 4PCh. 2.5 - Prob. 5PCh. 2.5 - Prob. 6PCh. 2.5 - Prob. 7PCh. 2.5 - Prob. 8PCh. 2.5 - Prob. 9PCh. 2.5 - Prob. 10PCh. 2.5 - Prob. 11PCh. 2.5 - Prob. 12PCh. 2.5 - Prob. 13PCh. 2.5 - Prob. 14PCh. 2.5 - Prob. 15PCh. 2.5 - Prob. 16PCh. 2.5 - Prob. 17PCh. 2.5 - Prob. 18PCh. 2.5 - Prob. 19PCh. 2.5 - Prob. 20PCh. 2.5 - Prob. 21PCh. 2.5 - Prob. 22PCh. 2.5 - Prob. 23PCh. 2.5 - Prob. 24PCh. 2.5 - Prob. 25PCh. 2.5 - Prob. 26PCh. 2.5 - Prob. 27PCh. 2.5 - Prob. 28PCh. 2.5 - Prob. 29PCh. 2.5 - Prob. 30PCh. 2.6 - Prob. 1PCh. 2.6 - Prob. 2PCh. 2.6 - Prob. 3PCh. 2.6 - Prob. 4PCh. 2.6 - Prob. 5PCh. 2.6 - Prob. 6PCh. 2.6 - Prob. 7PCh. 2.6 - Prob. 8PCh. 2.6 - Prob. 9PCh. 2.6 - Prob. 10PCh. 2.6 - Prob. 11PCh. 2.6 - Prob. 12PCh. 2.6 - Prob. 13PCh. 2.6 - Prob. 14PCh. 2.6 - Prob. 15PCh. 2.6 - Prob. 16PCh. 2.6 - Prob. 17PCh. 2.6 - Prob. 18PCh. 2.6 - Prob. 19PCh. 2.6 - Prob. 20PCh. 2.6 - Prob. 21PCh. 2.6 - Prob. 22PCh. 2.6 - Prob. 23PCh. 2.6 - Prob. 24PCh. 2.6 - Prob. 25PCh. 2.6 - Prob. 26PCh. 2.6 - Prob. 27PCh. 2.6 - Prob. 28PCh. 2.6 - Prob. 29PCh. 2.6 - Prob. 30P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Using MATLAB, develop a computer program for the finite difference solution with general θ scheme for the 1D consolidation of a uniform layer of soil. Compare the results for θ=0, 0.5, 2/3 and 1.0 for α=0.49 and α=0.51 against the analytical solution of Terzaghi’s equation for T=0.5. Apply the program to both cases of double draining layer and single draining layer.arrow_forwardThe van der Waal's equation of state is given as RT a v-b v² For sulfur dioxide at temperature, T, of 300 K and a pressure, P, of 1 atm, the constants are given as: R = 0.08206 L.atm/(mol.K) L2.mol² P = a = 6.7689 atm.L b=0.05679 L.mol™¹ a) Plot the function f(v)=0 the for volumes for the range of 0 to 40 L/mol using 0.5 increment. b) Identify the root in this plot (where the curve crosses x-axis). c) Use the MATLAB function (fzero) to solve the original f(v) function for the specific volume using the initial guess from part (c). d) Use the MATLAB function (roots) to solve the original f(v) function for the specific volume.arrow_forwardSuppose that a parachutist with linear drag (m=50 kg, c=12.5kg/s) jumps from an airplane flying at an altitude of a kilometer with a horizontal velocity of 220 m/s relative to the ground. a) Write a system of four differential equations for x,y,vx=dx/dt and vy=dy/dt. b) If theinitial horizontal position is defined as x=0, use Euler’s methods with t=0.4 s to compute the jumper’s position over the first 40 s. c) Develop plots of y versus t and y versus x. Use the plot to graphically estimate when and where the jumper would hit the ground if the chute failed to open.arrow_forward
- Computer Science f(x)= Sin(x) – x 3 + C Where C = Max [0.15, (69/100)] x20, (x is in radian). Apply the false position method three iterations to find the root of the function (Decide the starting values of Xl and Xu yourself)arrow_forwardThe finite difference method transforms the ordinary differential equation in a system of linear equations of the form with k=1,2,...,(n−1) , h=1/n, y0=0 and yn=5 . Knowing this, make n=5 and assemble the associated linear system. Then solve numerically using some iterative method and compare the numerical solution with the exact analytical solution y(x)=x^4+4x . So do the same for n=10 and comment on what you observed. code with python.arrow_forwardComputer Science Please help solve this problem by writing a code in PYTHON language. Thank you! Write a function for the Gauss-Seidel method. Test the function by solving the equations Äx = 6 where [3 -1 1] A = 3 6 2 [3 3 7 and b = 0 4 Use two different values of the relaxation parameter w. Show that you obtain approximately the same answer, and explain which value of w obtained the solution more efficiently.arrow_forward
- Use python or Matlabarrow_forwardA discharge factor is a ratio which compares the mass flow rate at the end of a channel or nozzle to an ideal channel or nozzle. The discharge factor for flow through an open channel of parabolic cross-section is: K = 1.2 [V16x +1+ In(V16x² +1+4x)]³ 4x where x is the ratio of the maximum water depth to breadth of the channel at the top of the water. Determine the discharge factors for x in the range 0.45 to 0.90 in steps of 0.05. Script e C Reset I MATLAB Docume 1 %Give values for x: 2 3 %Solve for K: 4arrow_forwardTwo small charged objects attract each other with a force F when separated by a distance d.If the charge on each object is reduced to one-fourth of its original value and the distance between them is reduced to d/2,the force becomes?arrow_forward
- A circle in the XY-coordinate system is specified by the center coordinates (x, y) and radius (r). Read the values for 2 circles- x1, y1, r1 for C1 and x2, y2, r2 for C2. (i) Determine whether the 2 circles intersect. To solve the problem it suffices to check if the distance between the 2 centers is lesser than the sum of radii of the 2 circles. (ii) Find the smallest circle that encloses the two circles and return its center coordinates and radius. programming language - carrow_forwardAnswer question 3arrow_forwardThe displacement of an oscillating spring can be described by x = A cos(wt) where x = displacement at time t, A = maximum displacement, w = angular frequency, which depends on the spring constant and the mass attached to the spring, and t = time. Find the displacement, x, with maximum displacement A of 4 cm, for times from 0 to 120 seconds with increments of 30 seconds, and angular frequencies from 0.4 to 0.6 radians/sec, with increments of 0.1 radians/sec. The displacement for all combinations of times and angular frequencies needs to be calculated. Use meshgrid. Display your results in a matrix with angular frequencies along the top row and times along the left column like so (you may put zero, 0, or NaN, in the upper left corner:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr