Chemistry: Atoms First
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 26, Problem 26.62QP
Interpretation Introduction

Interpretation:

The percent by mass of manganese in the given sample has to be calculated.

Concept introduction:

Mass percent: To express the concentration of a component in a mixture we can use mass percent.  Dividing the grams of solute by grams of solution and then multiply with 100 to obtain percentage.

The formula to calculate mass percent is

Masspercent=grams ofsolutegrams ofsolution×100

Expert Solution & Answer
Check Mark

Answer to Problem 26.62QP

The percent by mass of manganese in the given sample is 6.49%

Explanation of Solution

The reaction between iron ion and permanagate and its balanced equation is represented as follows.

5Fe2+(aq) + MnO4- (aq) + 8H+(aq)5Fe3+(aq) + Mn2+(aq) + 4H2O(l)

Cr2O7- (aq) + 14H+(aq) + 6Fe2+(aq)2Cr3+(aq) + 7H2O(l) + 6Fe3+(aq)

To determine percent by mass of manganese

From the above equation we can say that 1 mole of permanganate is equalent to 5 moles of iron (II) ion.

From this we can calculate the original amount of ion (II) is

50.0mL×0.0800molFe2+100mLsolution=4.00×10-3molFe2+

Now, determine the excess amount of iron (II) with the help of balanced equation.

Cr2O7- (aq) + 14H+(aq) + 6Fe2+(aq)2Cr3+(aq) + 7H2O(l) + 6Fe3+(aq)

From the above equation we can say that 1 mole of dicromate is equalent to 6 moles of iron (II) ion.  The excess amount of iron (II) is calculated as follows

22.4mL×0.0100molCr2O72- 1000mLsolution×6molFe2+1molCr2O72-= 1.34×10-3molFe2+

The consumed amount of iron is

(4.00×10-3molFe2+)(1.34×10-3molFe2+)=2.66×10-3molFe2+

From the above values, find the mass of manganese

(2.66×10-3molFe2+)×1molMnO4-5molFe2+×1molMn1molMnO4-×54.94gMn1molMn=0.0292gMn

Therefore, the percent by mass of manganese is

0.0292g0.450g×100% = 6.49%

Conclusion

The percent by mass of manganese in the given sample was 6.49%

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!
. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL F
Five chemistry project topic that does not involve practical

Chapter 26 Solutions

Chemistry: Atoms First

Ch. 26 - Prob. 26.11QPCh. 26 - Prob. 26.12QPCh. 26 - Prob. 26.13QPCh. 26 - Prob. 26.14QPCh. 26 - Prob. 26.15QPCh. 26 - Prob. 26.16QPCh. 26 - Prob. 26.17QPCh. 26 - Prob. 26.18QPCh. 26 - Which of the following compounds would require...Ch. 26 - Prob. 26.20QPCh. 26 - Prob. 26.21QPCh. 26 - Prob. 26.22QPCh. 26 - Prob. 26.23QPCh. 26 - Prob. 26.24QPCh. 26 - Prob. 26.25QPCh. 26 - Prob. 26.26QPCh. 26 - Prob. 26.27QPCh. 26 - Prob. 26.28QPCh. 26 - Prob. 26.29QPCh. 26 - Prob. 26.30QPCh. 26 - Prob. 26.31QPCh. 26 - Prob. 26.32QPCh. 26 - Prob. 26.33QPCh. 26 - Prob. 26.34QPCh. 26 - Prob. 26.35QPCh. 26 - Prob. 26.36QPCh. 26 - Prob. 26.37QPCh. 26 - Prob. 26.38QPCh. 26 - Prob. 26.39QPCh. 26 - Prob. 26.40QPCh. 26 - Prob. 26.41QPCh. 26 - Prob. 26.42QPCh. 26 - Prob. 26.43QPCh. 26 - Prob. 26.44QPCh. 26 - Prob. 26.45QPCh. 26 - Prob. 26.46QPCh. 26 - Prob. 26.47QPCh. 26 - With the Hall process, how many hours will it take...Ch. 26 - The overall reaction for the electrolytic...Ch. 26 - Prob. 26.50QPCh. 26 - Prob. 26.51QPCh. 26 - In basic solution, aluminum metal is a strong...Ch. 26 - Prob. 26.53QPCh. 26 - Prob. 26.54QPCh. 26 - Prob. 26.55QPCh. 26 - Prob. 26.56QPCh. 26 - Prob. 26.57QPCh. 26 - Prob. 26.58QPCh. 26 - Prob. 26.59QPCh. 26 - Prob. 26.60QPCh. 26 - Prob. 26.61QPCh. 26 - Prob. 26.62QPCh. 26 - Prob. 26.63QPCh. 26 - Prob. 26.64QPCh. 26 - Prob. 26.65QPCh. 26 - Prob. 26.66QPCh. 26 - Prob. 26.67QPCh. 26 - Prob. 26.68QPCh. 26 - Prob. 26.69QPCh. 26 - Prob. 26.70QPCh. 26 - Prob. 26.71QPCh. 26 - Prob. 26.72QPCh. 26 - Prob. 26.73QPCh. 26 - The following are two reaction schemes involving...Ch. 26 - Prob. 26.75QPCh. 26 - Prob. 26.76QPCh. 26 - Prob. 26.77QPCh. 26 - Prob. 26.78QPCh. 26 - Prob. 26.79QPCh. 26 - Prob. 26.80QPCh. 26 - Prob. 26.81QPCh. 26 - Chemical tests of four metals A, B, C, and D show...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY