In the circuit shown in Fig. E26.51 , C = 5.90 µ F, ε = 28.0 V. and the emf has negligible resistance. Initially the capacitor is uncharged and the switch S is in position 1. The switch is then moved to position 2, so that the capacitor begins to charge, (a) What will be the charge on the capacitor a long time after S is moved to position 2? (b) After S has been in position 2 for 3.00 ms, the charge on the capacitor is measured to be 110 µC. What is the value of the resistance R ? (c) How long after S is moved to position 2 will the charge on the capacitor be equal to 99.0% of the final value found in part (a)? Figure E26.51
In the circuit shown in Fig. E26.51 , C = 5.90 µ F, ε = 28.0 V. and the emf has negligible resistance. Initially the capacitor is uncharged and the switch S is in position 1. The switch is then moved to position 2, so that the capacitor begins to charge, (a) What will be the charge on the capacitor a long time after S is moved to position 2? (b) After S has been in position 2 for 3.00 ms, the charge on the capacitor is measured to be 110 µC. What is the value of the resistance R ? (c) How long after S is moved to position 2 will the charge on the capacitor be equal to 99.0% of the final value found in part (a)? Figure E26.51
In the circuit shown in Fig. E26.51, C = 5.90 µF, ε = 28.0 V. and the emf has negligible resistance. Initially the capacitor is uncharged and the switch S is in position 1. The switch is then moved to position 2, so that the capacitor begins to charge, (a) What will be the charge on the capacitor a long time after S is moved to position 2? (b) After S has been in position 2 for 3.00 ms, the charge on the capacitor is measured to be 110 µC. What is the value of the resistance R? (c) How long after S is moved to position 2 will the charge on the capacitor be equal to 99.0% of the final value found in part (a)?
Please help me on the following question (Please refer to image below)An Olympic lifter (m = 103kg) is holding a lift with a mass of 350 kg. The barexerts a purely vertical force that is equally distributed between both hands. Each arm has amass of 9 kg, are 0.8m long and form a 40° angle with the horizontal. The CoM for each armis 0.5 m from hand. Assuming the lifter is facing us in the diagram below, his right deltoidinserts 14cm from the shoulder at an angle of 13° counter-clockwise from the humerus.A) You are interested in calculating the force in the right deltoid. Draw a free body diagramof the right arm including the external forces, joint reaction forces, a coordinate system andstate your assumptions.B) Find the force exerted by the right deltoidC) Find the shoulder joint contact force. Report your answer using the magnitude and directionof the shoulder force vector.
I need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could be
Question 6:
Chlorine is widely used to purify municipal water supplies and to treat swimming pool
waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr
and 24°C.
(a) How many grams of Cl₂ are in the sample?
⚫ Atomic mass of CI = 35.453 g/mol
• Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol
Solution:
Use the Ideal Gas Law:
Step 1: Convert Given Values
• Pressure: P = 895 torr → atm
PV=
= nRT
1
P = 895 ×
= 1.1789 atm
760
•
Temperature: Convert to Kelvin:
T24273.15 = 297.15 K
• Gas constant: R = 0.0821 L atm/mol. K
Volume: V = 8.70 L
Step 2: Solve for n
.
PV
n =
RT
n =
(1.1789)(8.70)
(0.0821)(297.15)
10.25
n =
= 0.420 mol
24.405
Step 3: Calculate Mass of Cl₂
Final Answer: 29.78 g of Cl₂.
mass nx M
mass=
(0.420)(70.906)
mass=
29.78 g
Chapter 26 Solutions
University Physics with Modern Physics (14th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY