A circuit consists of a series combination of 6.00-kΩ and 5.00-kΩ resistors connected across a 50.0-V battery having negligible internal resistance. You want to measure the true potential difference (that is, the potential difference without the meter present) across the 5.00- kΩ resistor using a voltmeter having an internal resistance of 10.0 kΩ. (a) What potential difference does the voltmeter measure across the 5.00-kΩ resistor? (b) What is the true potential difference across this resistor when the meter is not present? (c) By what percentage is the voltmeter reading in error from the true potential difference?
Learn your wayIncludes step-by-step video
Chapter 26 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
Microbiology with Diseases by Body System (5th Edition)
Anatomy & Physiology (6th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
- A battery is used to charge a capacitor through a resistor as shown in Figure P27.44. Show that half the energy supplied by the battery appears as internal energy in the resistor and half is stored in the capacitor. Figure P27.44arrow_forwardPower P0 = I0 V0 is delivered to a resistor of resistance R0. If the resistance is doubled (Rnew = 2R0) while the voltage is adjusted such that the current is constant, what are the ratios (a) Pnew/P0 and (b) Vnew/V0? If, instead, the resistance is held constant while Pnew = 2P0, what are the ratios (c) Vnew/V0, and (d) Inew/I0?arrow_forwardA child's electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200 inseries with a 1.53-V carbon-zinc dry cell having a 0.100- internal resistance. The load resistance is 10.0 . (a) Draw a circuit diagram of the toy and itsbatteries, (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?arrow_forward
- Explain why R=R0(1 + a?T) for the temperature variation of the resistance R of an object is not as accurate as P=P0(1 + a?T) which gives the temperature variation of resistivity P.arrow_forwardA 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg • °C, assuming no heat escapes?arrow_forwardConsider the circuit below. The battery has an emf of = 30.00 V and an internal resistance of r = 1,00 . (a) Find the equivalent resistance of the circuit and the current out of the battery. (b) Find the current through each resistor, (c) Find die potential drop across each resistor, (d) Find the power dissipated by each resistor, (e) Find the total power supplied by the batteries.arrow_forward
- The terminals of a battery are connected across two resistors in series. The resistances of the resistors are not the same. Which of the following statements are correct? Choose all that are correct. (a) The resistor with the smaller resistance carries more current than the other resistor. (b) The resistor with the larger resistance carries less current than the other resistor. (c) The current in each resistor is the same. (d) The potential difference across each resistor is the same. (e) The potential difference is greatest across the resistor closest to the positive terminal.arrow_forwardFour resistors are connected to a battery as shown in Figure P21.40. The current in the battery is I, the battery emf is , and the resistor values are R1 = R, R2 = 2R, R3 = 4R, and R4 = 3R. (a) Rank the resistors according to the potential difference across them, from largest to smallest. Note any cases of equal potential differences. (b) Determine the potential difference across each resistor in terms of . (c) Rank the resistors according to the current in them, from largest to smallest. Note any cases of equal currents. (d) Determine the current in each resistor in terms of I. (e) If R3 is increased, what happens to the current in each of the resistors? (f) In the limit that R3 , what are the new values of the current in each resistor in terms of I, the original current in the battery? Figure P21.40arrow_forwardThe terminals of a battery are connected across two resistors in parallel. The resistances of the resistors are not the same. Which of the following statements is correct? Choose all that are correct. (a) The resistor with the larger resistance carries more current than the other resistor. (b) The resistor with the larger resistance carries less current than the other resistor. (c) The potential difference across each resistor is the same. (d) The potential difference across the larger resistor is greater than the potential difference across the smaller resistor. (e) The potential difference is greater across the resistor closer to the battery.arrow_forward
- A resistor with resistance 31.5 Q is connected to the terminals of a voltage source. (a) Calculate the current through the resistor when the voltage is set at 7.00 V. A (b) Calculate the power dissipated by the resistor when the voltage is set at 7.00 V. W (c) If the voltage is doubled, recalculate the power. Warrow_forwardAlthough an ideal voltmeter has an infinite internal resistance, this theoretical ideal is usually not met in practice. The voltmeter in the Figure has an internal resistance of 2 x 109 Ω and is used to measure the voltage across the resistor R2 as shown. Attaching this non-ideal voltmeter decreases the voltage across R2. Calculate the magnitude of this decrease using an emf of 10 V and R1 = R2 = 150 kΩ.arrow_forwardThree resistors are connected as shown to a battery. The value of the resistors are: R1 = 1.25KΩ R2 = 1.5kΩ and R3 = 3kΩ. The battery voltage is measured to be 45V. (i) What is the equivalent resistance for the circuit? (ii) What is the voltage drop over R2?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning