Pearson eText Fundamentals of General, Organic, and Biological Chemistry -- Instant Access (Pearson+)
Pearson eText Fundamentals of General, Organic, and Biological Chemistry -- Instant Access (Pearson+)
8th Edition
ISBN: 9780135213759
Author: John McMurry, David Ballantine
Publisher: PEARSON+
bartleby

Videos

Question
Book Icon
Chapter 26, Problem 26.34AP

(a)

Interpretation Introduction

Interpretation:

The four major heterocyclic bases in DNA has to be given.

Concept Introduction:

Composition of nucleic acid: Nucleic acid is a polymer of nucleotides. Each nucleotide has three parts: a sugar, a nitrogenous base, and a phosphate group.

Nitrogenous bases: Five types of nitrogenous bases (has unique one-letter code A, G, T, U, and C) are derived from two parent compounds called purine and pyrimidine. The purine derivatives are Adenine and Guanine are two fused nitrogen containing rings. The pyrimidine derivatives are Thymine, Cytosine, and Uracil are nitrogen containing six-membered ring.  Adenine, Guanine, Thymine, and Cytosine are the nitrogenous bases present in DNA. Adenine, Guanine, Cytosine and Uracil are the nitrogenous bases present in RNA.

(b)

Interpretation Introduction

Interpretation:

The four major heterocyclic bases in RNA has to be given.

Concept Introduction:

Composition of nucleic acid: Nucleic acid is a polymer of nucleotides. Each nucleotide has three parts: a sugar, a nitrogenous base, and a phosphate group.

Nitrogenous bases: Five types of nitrogenous bases (has unique one-letter code A, G, T, U, and C) are derived from two parent compounds called purine and pyrimidine. The purine derivatives are Adenine and Guanine are two fused nitrogen containing rings. The pyrimidine derivatives are Thymine, Cytosine, and Uracil are only one nitrogen containing six-membered ring.  Adenine, Guanine, Thymine, and Cytosine are the nitrogenous bases present in DNA. Adenine, Guanine, Cytosine and Uracil are the nitrogenous bases present in RNA.

(c)

Interpretation Introduction

Interpretation:

In both RNA and DNA, difference in heterocyclic bases has to be given.

Concept Introduction:

Composition of nucleic acid: Nucleic acid is a polymer of nucleotides. Each nucleotide has three parts: a sugar, a nitrogenous base, and a phosphate group.

Nitrogenous bases: Five types of nitrogenous bases (has unique one-letter code A, G, T, U, and C) are derived from two parent compounds called purine and pyrimidine. The purine derivatives are Adenine and Guanine are two fused nitrogen containing rings. The pyrimidine derivatives are Thymine, Cytosine, and Uracil are only one nitrogen containing six-membered ring.  Adenine, Guanine, Thymine, and Cytosine are the nitrogenous bases present in DNA. Adenine, Guanine, Cytosine and Uracil are the nitrogenous bases present in RNA.

Numbering the atoms in sugar and base rings:

Pearson eText Fundamentals of General, Organic, and Biological Chemistry -- Instant Access (Pearson+), Chapter 26, Problem 26.34AP

In order to distinguish the atoms in the sugar of a nucleoside and atoms of a base ring, numbers without prime is used for atoms in the base ring and numbers with prime used for the atoms in the sugar ring.

Blurred answer
Students have asked these similar questions
Show work. don't give Ai generated solution....give correct solution
Biochemistry What is the process of "transamination" in either the muscles or the liver, that involves keto acid or glutamic acid? Please explain how the steps work. Thank you!
Biochemistry Please help. Thank you What is the importance of glutamic acid in the metabolism of nitrogen from amino acids? (we know therole; it’s used to remove the nitrogen from amino acids so that the remaining carbon skeleton can bebroken down by the “usual” pathways, but what is the important, unique role that only glutamicacid/glutamate can do?)

Chapter 26 Solutions

Pearson eText Fundamentals of General, Organic, and Biological Chemistry -- Instant Access (Pearson+)

Ch. 26.4 - Prob. 26.11KCPCh. 26.6 - What are Okazaki fragments? What role do they...Ch. 26.6 - Prob. 26.13PCh. 26.8 - Prob. 26.14PCh. 26.8 - Prob. 26.15PCh. 26.9 - Prob. 26.1CIAPCh. 26.9 - Prob. 26.2CIAPCh. 26.9 - Using a variety of sources, research which...Ch. 26.9 - Prob. 26.4CIAPCh. 26.9 - List possible codon sequences for the following...Ch. 26.9 - Prob. 26.17PCh. 26.9 - What amino acids do the following sequences code...Ch. 26.9 - Prob. 26.19PCh. 26.10 - Prob. 26.20PCh. 26.10 - What anticodon sequences of tRNAs match the mRNA...Ch. 26 - Combine the following structures to create a...Ch. 26 - Prob. 26.23UKCCh. 26 - Copy the following simplified drawing of a DNA...Ch. 26 - Prob. 26.25UKCCh. 26 - Prob. 26.26UKCCh. 26 - Prob. 26.27APCh. 26 - Prob. 26.28APCh. 26 - Prob. 26.29APCh. 26 - Prob. 26.30APCh. 26 - Prob. 26.31APCh. 26 - For the following molecule: (a) Label the three...Ch. 26 - Prob. 26.33APCh. 26 - Prob. 26.34APCh. 26 - Prob. 26.35APCh. 26 - Prob. 26.36APCh. 26 - Draw structures to show how the sugar and...Ch. 26 - What is the difference between the 3 end and the 5...Ch. 26 - Prob. 26.39APCh. 26 - Prob. 26.40APCh. 26 - Draw the complete structure of the RNA...Ch. 26 - Prob. 26.42APCh. 26 - Prob. 26.43APCh. 26 - Prob. 26.44APCh. 26 - Prob. 26.45APCh. 26 - If a double-stranded DNA molecule is 22% G, what...Ch. 26 - How are replication, transcription, and...Ch. 26 - Why is more than one replication fork needed when...Ch. 26 - Prob. 26.49APCh. 26 - What are the three main kinds of RNA, and what are...Ch. 26 - Prob. 26.51APCh. 26 - Prob. 26.52APCh. 26 - Prob. 26.53APCh. 26 - Prob. 26.54APCh. 26 - What is a codon and on what kind of nucleic acid...Ch. 26 - Prob. 26.56APCh. 26 - Prob. 26.57APCh. 26 - Prob. 26.58APCh. 26 - What amino acids are specified by the following...Ch. 26 - Prob. 26.60APCh. 26 - What anticodon sequences are complementary to the...Ch. 26 - Prob. 26.62APCh. 26 - Refer to Problem 26.62. What sequence appears on...Ch. 26 - Refer to Problems 26.62 and 26.63. What dipeptide...Ch. 26 - Prob. 26.65APCh. 26 - Prob. 26.66APCh. 26 - Prob. 26.67APCh. 26 - Prob. 26.68APCh. 26 - Prob. 26.69APCh. 26 - Prob. 26.70CPCh. 26 - Prob. 26.71CPCh. 26 - Prob. 26.73CPCh. 26 - Prob. 26.75GPCh. 26 - Prob. 26.76GPCh. 26 - Prob. 26.77GPCh. 26 - Prob. 26.78GP
Knowledge Booster
Background pattern image
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning
Text book image
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Text book image
Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning
Text book image
Concepts of Biology
Biology
ISBN:9781938168116
Author:Samantha Fowler, Rebecca Roush, James Wise
Publisher:OpenStax College
Text book image
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Text book image
Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College
DNA Use In Forensic Science; Author: DeBacco University;https://www.youtube.com/watch?v=2YIG3lUP-74;License: Standard YouTube License, CC-BY
Analysing forensic evidence | The Laboratory; Author: Wellcome Collection;https://www.youtube.com/watch?v=68Y-OamcTJ8;License: Standard YouTube License, CC-BY