Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 9E
Suppose somebody proposed that rather than invoking dark matter to explain the increased orbital velocities of stars beyond the Sun’s orbit, the problem could be solved by assuming that the Milky Way’s central black hole was much more massive. Does simply increasing the assumed mass of the Milky Way’s central supermassive black hole correctly resolve the issue of unexpectedly high orbital velocities in the Galaxy? Why or why not?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A galaxy's rotation curve is a measure of the orbital speed of stars as a function of distance
from the galaxy's centre. The fact that rotation curves are primarily flat at large galactocen-
tric distances (vrot(r) ~ constant) is the most common example of why astronomer's believe
dark matter exists. Let's work out why!
Assuming that each star in a given galaxy has a circular orbit, we know that the accelera-
tion due to gravity felt by each star is due to the mass enclosed within its orbital radius r and
equal to v?/r. Here, ve is the circular orbit velocity of the star. (a) Show that the expected
relationship between ve and r due to the stellar halo (p(r) xr-3.5) does not produce a flat
rotation curve. (b) Show that a p(r) ∞ r¯² density profile successfully produces a flat ro-
tation curve and must therefore be the general profile that dark matter follows in our galaxy.
Figure 2 shows the "rotation curve" of
NGC 2742. It plots the “radial velocity
(V)" (how fast material is moving
either toward or away from us) that is
measured for objects at different
distances (R = radius") from the
center of the galaxy. The center of the
galaxy is at 0 kpc (kiloparsecs) with a
speed of 9 km/sec away from us.
(These velocities have been corrected
for the observed tilt of the galaxy and
represent true orbital velocities of the
stars and gas.)
200
100
U4779
-100
As you can see, one side of the galaxy
is moving with a negative velocity
(spinning toward us), while the other
side has a positive velocity (spinning
away from us). Using Newton's
gravity equation, we will be able to
determine the gravitational mass of the
entire galaxy and how the mass varies
versus distance from the galaxy's center.
-200
-8
8
-4
Radius (kpc)
Read the following text carefully and follow the instructions:
Select five radii spaced evenly from 0-10 kpc across the galaxy. Your selections should…
A Type la supernova explodes in a galaxy at a
distance of 6.10×107 light-years from Earth. If
astronomers detect the light from the
supernova today, how many years T have
passed since the supernova exploded? T=
2.07 x10 -5 years Given a Hubble constant of
74.3 km/s/Mpc, at what speed v is this galaxy
moving away from Earth? v= km/s What is
this galaxy's redshift? redshift:
Chapter 25 Solutions
Astronomy
Ch. 25 - Explain why we see the Milky Way as a faint band...Ch. 25 - Explain where in a spiral galaxy you would expect...Ch. 25 - Describe several characteristics that distinguish...Ch. 25 - Briefly describe the main parts of our Galaxy.Ch. 25 - Describe the evidence indicating that a black hole...Ch. 25 - Explain why the abundances of heavy elements in...Ch. 25 - What will be the long-term future of our Galaxy?Ch. 25 - Suppose the Milky Way was a band of light...Ch. 25 - Suppose somebody proposed that rather than...Ch. 25 - The globular clusters revolve around the Galaxy in...
Ch. 25 - Shapley used the positions of globular clusters to...Ch. 25 - Consider the following five kinds of objects: open...Ch. 25 - The dwarf galaxy in Sagittarius is the one closest...Ch. 25 - Suppose three stars lie in the disk of the Galaxy...Ch. 25 - Why does star formation occur primarily in the...Ch. 25 - Where in the Galaxy would you expect to find Type...Ch. 25 - Suppose that stars evolved without losing...Ch. 25 - Assume that the Sun orbits the center of the...Ch. 25 - The Sun orbits the center of the Galaxy in 225...Ch. 25 - Suppose the Sun orbited a little farther out, but...Ch. 25 - We have said that the Galaxy rotates...Ch. 25 - If our solar system is 4.6 billion years old, how...Ch. 25 - Suppose the average mass of a star in the Galaxy...Ch. 25 - The first clue that the Galaxy contains a lot of...Ch. 25 - The best evidence for a black hole at the center...Ch. 25 - The next step in deciding whether the object in...Ch. 25 - Suppose the Sagittarius dwarf galaxy merges...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
1. Define and distinguish incomplete penetrance and variable expressivity.
Genetic Analysis: An Integrated Approach (3rd Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
a. Draw the mechanism for the following reaction if it a involves specific-base catalysis. b. Draw the mechanis...
Organic Chemistry (8th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose you were Hubble and Humason, working on the distances and Doppler shifts of the galaxies. What sorts of things would you have to do to convince yourself (and others) that the relationship you were seeing between the two quantities was a real feature of the behavior of the universe? (For example, would data from two galaxies be enough to demonstrate Hubble’s law? Would data from just the nearest galaxies-in what astronomers call “the Local Group”-suffice?)arrow_forwardThe best evidence for a black hole at the center of the Galaxy also comes from the application of Kepler’s third law. Suppose a star at a distance of 20 light-hours from the center of the Galaxy has an orbital speed of 6200 km/s. How much mass must be located inside its orbit?arrow_forwardWhen comparing two isolated spiral galaxies that have the same apparent brightness, but rotate at different rates, what can you say about their relative luminosity?arrow_forward
- Once again in this chapter, we see the use of Kepler’s third law to estimate the mass of supermassive black holes. In the case of NGC 4261, this chapter supplied the result of the calculation of the mass of the black hole in NGC 4261. In order to get this answer, astronomers had to measure the velocity of particles in the ring of dust and gas that surrounds the black hole. How high were these velocities? Turn Kepler’s third law around and use the information given in this chapter about the galaxy NGC 4261-the mass of the black hole at its center and the diameter of the surrounding ring of dust and gas-to calculate how long it would take a dust particle in the ring to complete a single orbit around the black hole. Assume that the only force acting on the dust particle is the gravitational force exerted by the black hole. Calculate the velocity of the dust particle in km/s.arrow_forwardThe Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot = 250 km s−1. Using Kepler’s 3rd Law, determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass.arrow_forwardAre the galaxies red-shifting or blue-shifting? Explain. (You may find the big-bang theory helpful). Andromeda galaxy is currently approaching our galaxy with a radial velocity of 266 km/sec. How far is our galaxy from Andromeda? (Hubble’s constant, H, is 73 km/sec/MParsec). When can the two galaxies be anticipated to collide?arrow_forward
- It is possible to derive the age of the universe given the value of the Hubble constant and the distance to a galaxy, again with the assumption that the value of the Hubble constant has not changed since the Big Bang. Consider a galaxy at a distance of 235 million light-years receding from us at a velocity, v. If the Hubble constant is 20.5 km/s per million light-years, what is its velocity? (Enter the magnitude in km/s.) _________ km/sarrow_forwardIf a galaxy is 8.9 Mpc away from Earth and recedes at 497 km/s, what is H. (in km/s/Mpc)? km/s/Mрс What is the Hubble time (in yr)? years How old (in yr) would the universe be, assuming space-time is flat and the expansion of the universe has not been accelerating? years How would acceleration change your answer? If the expansion of the Universe has been accelerating, the Universe could be substantially younger than the value entered above. If the expansion of the Universe has been accelerating, the Universe could be substantially older than the value entered above.arrow_forwardPretend that galaxies are spaced evenly, 2.0 Mpc apart, and the average mass of a galaxy is 1.0 x 1011 Mo: What is the average density (in kg/m3) of matter in the universe? (ote: The volume of a sphere is , and the mass of the sun is 2.0 x 1030 kg.) kg/m3arrow_forward
- (a) Estimate the height (z) above or below the Galactic plane for the globular cluster M13 (1,b = 59°, 40.9°) and the Orion Nebula (1,b = 209°, -19.4°). M13 and the Orion Nebula are 7 kpc and 450 pc away from Earth respectively. (b) To which components of the Galaxy do these objects probably belong? Explain your answers.arrow_forwardWhich of the following best describe the reasons we have to infer that a supermassive blackhole lurks in the centre of our galaxy? Stars keep disappearing from view as they get swallowed up in the galactic centre. Tight orbit of stars around an invisible companion & giant bubbles of cold, star forming gas have been expelled from galactic centre. We can measure the gravitational waves coming from such an enormous black hole. O Tight orbit of stars around an invisible companion & giant bubbles filled with gamma rays expelled from the galactic centre.arrow_forwardObservations of the central region of the galaxy M87 indicate that stars which are 60 light years later from the centre are orbiting the central supermassive black hole at speeds of 730kms^-1. Estimate the lads of the black hole, in solar masses.(You can assume circular motion, e.g. if you get 3 solar masses, type in 3). just wondering what formula I use?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning