Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 22E
If our solar system is 4.6 billion years old, how many galactic years has planet Earth been around?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Suppose that stars were born at random times over the last 10e10 years. The rate ofstar formation is simply the number of stars divided by 10e10 years. The fraction ofstars with detected extrasolar planets is at least 9 %. The rate of star formation can bemultiplied by this fraction to find the rate planet formation. How often (in years) doesa planetary system form in our galaxy? Assume the Milky Way contains 7 × 10e11 stars.
I've done this problem 3 different times from scratch and looked at similar problems here. Each time my answer is 1.587 (1.59 rounded to 2 significant figures), but when I submit, it says the answer is wrong. What do you think?
Suppose there are 9000.0 civilizations broadcasting radio signals in the Milky Way Galaxy at the moment. On average, how many stars would have to be searched before a signal is heard? Assume that there are 8 × 1011 stars in the Galaxy and one civilization per star.
Suppose that stars were born at random times over the last 1010 years. The rate of star formation is simply the number of stars divided by 1010 years. The fraction of stars with detected extrasolar planets is at least 11 %. The rate of star formation can be multiplied by this fraction to find the rate planet formation. How often (in years) does a planetary system form in our galaxy? Assume the Milky Way contains 3 × 1011 stars.
Chapter 25 Solutions
Astronomy
Ch. 25 - Explain why we see the Milky Way as a faint band...Ch. 25 - Explain where in a spiral galaxy you would expect...Ch. 25 - Describe several characteristics that distinguish...Ch. 25 - Briefly describe the main parts of our Galaxy.Ch. 25 - Describe the evidence indicating that a black hole...Ch. 25 - Explain why the abundances of heavy elements in...Ch. 25 - What will be the long-term future of our Galaxy?Ch. 25 - Suppose the Milky Way was a band of light...Ch. 25 - Suppose somebody proposed that rather than...Ch. 25 - The globular clusters revolve around the Galaxy in...
Ch. 25 - Shapley used the positions of globular clusters to...Ch. 25 - Consider the following five kinds of objects: open...Ch. 25 - The dwarf galaxy in Sagittarius is the one closest...Ch. 25 - Suppose three stars lie in the disk of the Galaxy...Ch. 25 - Why does star formation occur primarily in the...Ch. 25 - Where in the Galaxy would you expect to find Type...Ch. 25 - Suppose that stars evolved without losing...Ch. 25 - Assume that the Sun orbits the center of the...Ch. 25 - The Sun orbits the center of the Galaxy in 225...Ch. 25 - Suppose the Sun orbited a little farther out, but...Ch. 25 - We have said that the Galaxy rotates...Ch. 25 - If our solar system is 4.6 billion years old, how...Ch. 25 - Suppose the average mass of a star in the Galaxy...Ch. 25 - The first clue that the Galaxy contains a lot of...Ch. 25 - The best evidence for a black hole at the center...Ch. 25 - The next step in deciding whether the object in...Ch. 25 - Suppose the Sagittarius dwarf galaxy merges...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What will be the long-term future of our Galaxy?arrow_forwardIf you could search for life in the galaxy shown in this image, would you look among stars in the disk, in the central bulge, in the halo, or in all of those places? Discuss the factors that influence your decision.arrow_forwardA 1.43MSun main sequence star is found to have a planet in its habitable zone. What is the expected lifetime (in years) of the star? (Assume that the expected lifetime of the Sun is 11 ✕ 109 years. Round your answer to at least three significant figures.) Using the figure above, if Earth orbited this star, how far along the timeline would it get?arrow_forward
- If the Sun is 4.6 billion years old, how many times has it orbited the Milky Way galaxy? (The Sun is 8,300 pc from the center of the Milky Way, and orbits the center at a speed of 225 km/s.) timesarrow_forwardI answer is not 100, I also tried 21. I need help! Thank you!arrow_forwardIn a globular cluster, astronomers (someday) discover a star with the same mass as our Sun, but consisting entirely of hydrogen and helium. Is this star a good place to point our SETI antennas and search for radio signals from an advanced civilization? Group of answer choices No, because such a star (and any planets around it) would not have the heavier elements (carbon, nitrogen, oxygen, etc.) that we believe are necessary to start life as we know it. Yes, because globular clusters are among the closest star clusters to us, so that they would be easy to search for radio signals. Yes, because we have already found radio signals from another civilization living near a star in a globular cluster. No, because such a star would most likely not have a stable (main-sequence) stage that is long enough for a technological civilization to develop. Yes, because such a star is probably old and a technological civilization will have had a long time to evolve and develop there.arrow_forward
- If the solar nebula hypothesis is correct, do you think there are more planets in the Universe than stars? Why or why not?arrow_forwardIf the Sun is 4.6 billion years old, how many times has it orbited the Milky Way galaxy? (The Sun is 8,300 pc from the center of the Milky Way, and orbits the center at a speed of 225 km/s.)arrow_forwardTutorial A radio broadcast left Earth in 1925. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.30 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.85. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1925, distance in light years = time since broadcast left Earth. d = tnow - tbroadcast d = light years Submit Skip (you cannot come back)arrow_forward
- Tutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…arrow_forwardThe disk of the Milky Way galaxy contains roughly 200 billion (1 billion = 109 ) stars. The disk is not solid, but rather is a volume about 100,000 light-years in diameter (1 ly = 9500 billion kilometers) and 1000 light-years in thickness. What is the number density of stars in the Milky Way galaxy disk, in units of stars per cubic light-year? How about in units of stars per cubic km?arrow_forwardIf the sun is 4.6 billion years old, how many times has it orbited the Milky Way? (The sun is 8,300 pc from the cemetery of the Milky Way, and orbits the center at a speed of 225 km/s.) ______ timesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY